Reg. No.:					
1100.					

MANIPAL INSTITUTE OF TECHNOLOGY, MANIPAL

(A Constituent Institute of MAHE, Deemed University)

THIRD SEMESTER B.E. DEGREE MAKE-UP EXAMINATION

(REVISED CREDIT SYSTEM)

13 January 2007

Time:	ELECTRO MAGNETIC THEORY (ELE 207) Time: 3 hours Max.Marks: 50						
Note: Answer any FIVE full questions.							
1A)	A square sheet defined by $-2m \le x \le 2m$, $-2m \le y \le 2m$ lies in the z=-3m plane. The charge density on the sheet is $\zeta_s = 2(x^2 + y^2 + 9)^{3/2}$ nano coulomb/m ² . Calculate the electrical						
1B)	field intensity at the origin. (04) Charge is distributed uniformly along a straight line of finite length 2L. Show that for two external points near the mid point, such that r_1 and r_2 are small compared to the length, the potential V_{12} is the same as for an infinite line charge. (06)						
2A)	Given V=8x ² y ² -6xz ² volts. Find i) \vec{E} at p(3,4,5)						
	ii) Unit vector in the direction of \vec{E} iii) \vec{D} assuming free space. (03)						
2B)	Derive expression for the capacitance of a two wire transmission line (04)						
2C)	Explain boundary conditions between two dielectric media. (03)						
3A)	State and explain Biot-savart's law for static magnetic field (03)						
3B)	Develop expressions for the magnetic field intensity, both inside and outside a solid cylindrical conductor of radius 2cm, carrying a current of 100Amp with uniform current density (04)						
3C)	A conductor of length 2.5cm located at Z=0 X=4cm carries a current of 12Amp in the -ay direction find the uniform B in the region if the force on the conductor is $1.20 \times 10^{-2} \text{N}$ in the direction $(-ax+ay)/\sqrt{2}$ (03)						
4A)	Write a short notes on a) Stoke's Theorem as applied to magnetic field						
	b) Magnetic vector potential (04)						
4B)	Determine the loop inductance of two wire transmission line with solid wires of radii a and b (06)						
5A)	Show that Jtotal = $J + Jd$ with the usual notations. Explain the current density terms. (03)						
5B)	A circular loop of radius 10 cm is located in x-y plane in a magnetic field of flux density $B = 0.5 \cos 377t (3 \text{ ay} + 4 \text{ az})$ Tesla. Using Faraday's law find the induced emf in the loop, if there are 10 turns in the loop. (03)						
5C)	Write short note on 1) transformer emf 2) skin depth (04)						
6A)	Derive expressions for propagation constant and intrinsic impedance of the medium when a uniform plane wave propagates through a perfect dielectric medium. (06)						
6B)	A plane wave is travelling in the x-direction in a lossless medium having						

permeability same as free space and permittivity 9 times that of free space. Find the phase velocity of the wave. If the electric field intensity has only y-component with an amplitude of 10 v/m, find the amplitude and direction pf the magnetic field

(04)

intensity.