

Math 1.3

I Semester M.Sc. Examination, May 2011 MATHEMATICS Complex Analysis – I

Time: 3 Hours Max. Marks: 80

Instructions: Answer any five questions. Each question carry equal marks.

1. a) For each positive integer n, show that

$$1 + z + z^{2} + ... + z^{n-1} = \frac{1 - z^{n}}{1 - z}.$$
 (4+4+8)

- b) State and prove triangular inequality.
- c) Prove that $\left| \frac{z_1 z_2}{1 \overline{z}_1 z_2} \right| = 1$ if either $|z_1| = 1$ or $|z_2| = 1$. What exception must be mode if $|z_1| = |z_2| = 1$?
- 2. a) If Re z > 0, then prove that Re $\left(\overline{z}\sqrt{z^2 1}\right) \ge 0$. (8+8)
 - b) Show that z_1 and z_2 corresponds to diametrically opposite points on the Riemann sphere if and only if $z_1\overline{z}_2 = -1$.
- 3. a) Find the general equation of a straight line. (6+4+6)
 - b) Show that if the equation $z^2 + \alpha z + \beta = 0$ has a pair of conjugate complex roots, then α , β are both real and $\alpha^2 < 4\beta$.
 - c) Define a continuity of a function. Prove that f(z) = u(x, y) + iv(x, y) on continuous at $z_0 = x_0 + iy_0$ if and only if u and v are continuous at (x_0, y_0) .

Math 1.3

- 4. a) Deduce the polar form of a Cauchy-Riemann equations. (6+4+6)
 - b) Show that $f(z) = \sqrt{r} \left(\cos \frac{\theta}{2} + i \sin \frac{\theta}{2} \right)$. Where r > 0 and $0 < \theta < 2\pi$ is differentiable and find f'(z).
 - c) State and prove necessary and sufficient condition for a required to be convergent.
- 5. a) State and prove Weierstrass m-test. (6+6+4)
 - b) Prove that the power series $\sum_{n=0}^{\infty} na_n z^{n-1}$ obtained by differentially the power series $\sum_{n=0}^{\infty} a_n z^n$ has same radius of convergence of as the original series $\sum_{n=0}^{\infty} a_n z^n$.
 - $\sum_{n=0}^\infty a_n\ z^n\ .$ c) Find the region of convergence of the series $\sum_{n=0}^\infty \left(1+\frac{1}{n}\right)^{n^2}z^n\,.$
- 6. a) Prove that bilinear transformation preserves cross ratio. (6+6+4)
 - b) Let f(z) be a function which is continuous on any continuous rectifiable curve C and W be any point of the complex place not lying in C. Then prove that $F(w) = \int_{c} \frac{f(z)}{z w} dz$ is differentiable.
 - c) Evaluate the integral $\int_{c} x^{2} iy^{2} dz$ where C is the parabola $y = 2x^{2}$ from (1, 2) to (2, 8).
- 7. a) State and prove Cauchy theorem for a disk. (8+8)
 - b) State and prove Cauchy integral formula.
- 8. a) State and prove Liouville's theorem and hence deduce fundamental theorem of Algebra. (8+8)
 - b) State and prove Taylor's theorem.