Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(Constituent Institute of Manipal University, Manipal)
V SEMESTER, B.E. (MECHANICAL ENGINEERING) END SEMESTER (MAKE-UP) EXAMINATIONS - AUGUST 2008

SUBJECT: COMPUTER AIDED DESIGN (MEE-301)
(REVISED CREDIT SYSTEM)
[04-08-08]
MAX.MARKS: 50

Instructions to Candidates:

$>$ Answer ANY FIVE full questions.
$>$ Assume missing data, if any, suitably.
$>$ Use of graph sheets is mandatory for all plots.

1. Assuming a suitable displacement function, derive the element stiffness matrix for the beam element.
2.A Evaluate the co-ordinates of the points on Hermite Cubic spline defined by the position vectors $P_{0}=\left[\begin{array}{lll}3 & 5 & 0\end{array}\right]^{\top}, P_{1}=\left[\begin{array}{ccc}9 & 7 & 0\end{array}\right]^{\top}$ and tangent vectors $P_{0}=\left[\begin{array}{lll}3 & 3 & 0\end{array}\right]^{\top}$ and valuate $P_{1}=\left[\begin{array}{lll}4 & 3 & 0\end{array}\right]^{\top}$ with $\Delta u=0.2$ and plot the curve.
2.B Clip the line defined by points $A(-2.5,-1)$ and $B(2.5,1)$ using clipping window with vertices $(2,1.5)$, (-2, -1.5$),(2,-1.5)$ and $(-2,1.5)$ using Cohen-Sutherland clipping procedure and plot the resultant line.
3.A What is a register? Explain different types of registers.
3.B A ruled surface is generated between a Hermite cubic spline and a Bezier curve. The cubic spline is defined by the, data points $P_{0}=\left[\begin{array}{lll}2 & 2 & 0\end{array}\right]^{\top}$,
$P_{1}=\left[\begin{array}{lll}10 & 2 & 0\end{array}\right]^{\top}$ and tangent vectors $P_{0}=\left[\begin{array}{lll}3 & 3 & 0\end{array}\right]^{\top}, P_{1}=\left[\begin{array}{lll}3 & -3 & 0\end{array}\right]^{\top}$. The Bezier curve is defined by the points $Q_{0}=\left[\begin{array}{ccc}3 & 3 & -8\end{array}\right]^{\top}, Q_{1}=\left[\begin{array}{lll}8 & 8 & -8\end{array}\right]^{\top}$ and $Q_{2}=\left[\begin{array}{lll}12 & 3 & -8\end{array}\right]^{\top}$. Evaluate the points on the resultant surface at

$$
\begin{array}{ll}
\text { i. } & u=0.2 \text { and } v=0.4 \\
\text { ii. } & u=0.4 \text { and } v=0.2 \tag{6}
\end{array}
$$

4.A Plot an ellipse by using parametric equation with semi major axis $\mathrm{a}=10$ and semi minor axis $b=4$ with center at the origin. $\Delta u=15^{\circ}$.
4.B Write mid-point algorithm to generate the portion of the circle in the first quadrant with its center coinciding with the origin of the co-ordinate system.
5.A Evaluate and plot the pixel positions of the line having end points $(5,9)$ and $(9,14)$ using Bresenham's line algorithm.
5.B Obtain the mathematical formulation for a Hermite Bicubic surface.
6.B Derive an expression for evaluating the position vector on a Bezier curve defined by 5 data points.
6.B For the assemblage shown in fig. below obtain the global stiffness matrix, nodal displacements and reactions at the nodes 1 and 5 .

