$\mathbf{BTC} - \mathbf{31}$

III Semester B.Tech. Examination, Feb./March 2010 ENGINEERING MATHEMATICS – 3 (Discrete Maths)

Time: 3 Hours Max. Marks: 80

Instructions: 1) Answer **all** questions in Part **A**, **6** out of 8 questions in Part **B** and **3** out of 5 questions in Part **C**.

- 2) Part A: Questions from 1 to 8 carry 1 mark each and 9 to 14 carry 2 marks each.
- 3) Part **B**: **Each** question carries **5** marks.
- 4) Part C: Each question carries 10 marks.

PART - A

- 1. Define Union and Intersection of two sets A and B.
- 2. Define Power set with an example.
- 3. Let $A = \{1, 2, 3\}$ and $B = \{2, 4, 5\}$. Determine the number of relations from A to B.
- 4. Define a function. Give an example.
- 5. Let p, q, r be propositions having truth values T, F, F respectively. Find the truth value of $(p \lor q) \lor r$.
- 6. State the converse of if a quadrilateral is a parallelogram, then its diagonals bisect each other.
- 7. Define the sum rule.
- 8. How many different signals can be made by 5 flags from 8 flags of different colors?
- 9. Determine the sets A and B, given that $A B = \{1, 3, 7, 11\} B A = \{2, 6, 8\}$ and $A \cap B = \{4, 9\}$.
- 10. Let $A = \{1, 2, 3\}$ and $B = \{2, 4, 5\}$. Determine the number of relations from A, B that contain exactly five ordered pairs.

P.T.O.

BTC - 31

11. Let $A = \{0, \pm 1, \pm 2, \pm 3\}$. Consider the function $f: A \rightarrow R$ (Where R is the set of real numbers) defined by $f(x) = x^3 - 2x^2 + 3x + 1$, for $x \in A$. Find the range of f.

-2-

- 12. Let p and q be primitive statements for which the implication $p \rightarrow q$ is false. Determine the truth value of $p \land q$.
- 13. How many numbers of three distinct digits can be formed from 1, 2, 3, 4, 5?
- 14. Define: (i) Simple graph (ii) Multi graph Give one example for each.

1. For any two sets A and B, prove that

i)
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

ii)
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

- 2. Define the following relations:
 - i) Reflexive ii) Symmetric
- iii) Anti-Symmetric

Give one example for each.

- 3. Define a Tautology. Prove that the following compound proposition is a tautology. $[(p \rightarrow q) \ \land (q \rightarrow r)] \rightarrow p \rightarrow r$
- 4. State the laws of Boolean algebra.
- 5. In any undirected graph, prove that the number of odd degree vertices is even.
- 6. Prove by mathematical induction that, for all positive integers $n \ge 1$.

$$1 + 2 + 3 + \dots + n = \frac{1}{2} n (n+1).$$

- 7. Let G be the set of all non-zero real numbers and let a*b=1/2ab. Show that (G,*) is an abelian group.
- 8. Define Homomorphism, and Isomorphism of groups. Define $f: R \to R^+$ by $f(x) = e^x$ for all $x \in R$. Verify that f is an isomorphism.

-3- **BTC – 31**

PART - C

1. Using Venn diagram, prove that, for any three sets A, B, C

$$A\Delta(B\Delta C) = (A\Delta B) \Delta C$$

- 2. For any propositions p,q,r, prove the following:
 - i) $[(p \rightarrow q) \land (p \rightarrow r)] \leftrightarrow (q \land r)$
 - ii) $[(p \rightarrow q) \land (r \rightarrow q)] \leftrightarrow [(p \lor r) \rightarrow q]$
- 3. Let A = $\{1, 2, 3, 4, 5\}$. Define a relation R on A × A by (x_1, y_1) R (x_2, y_2) if and only if $x_1 + y_1 = x_2 + y_2$.
 - i) Verify that R is an equivalence relation on $A \times A$.
 - ii) Determine the equivalence classes [(1, 3)], [(2, 4)] and [(1, 1)].
- 4. Define Euler graph. A given connected graph G is an Euler graph if all vertices of G are of even degree.
- 5. Prove that the intersection of two subgroups of a group is a subgroup of the group. Is the union of two subgroups of the group a subgroup of the group? Justify your answer.