Reg.No					
1765.110					
0					

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL UNIVERSITY, MANIPAL - 576 104

FIRST SEMESTER B.E DEGREE MAKE UP EXAMINATION- DECEMBER 2010

SUB: ENGG. MATHEMATICS I (MAT – 101) (REVISED CREDIT SYSTEM)

Time: 3 Hrs. Max.Marks: 50

- **∠** Note : a) Answer any FIVE full questions.
 - b) All questions carry equal marks
- Find the nth derivatives of the following 1A.
 - $\frac{x^2}{2x^2 + 7x + 6}$ (ii) coshx. cos3x (i)
- Trace the following curve with explanations y^2 (a –x) = x^3 , a > 0 1B.
- Find the image of the line $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{4}$ in the plane 2x + y + z = 6. 1C.
- If $y = \sin m \sin^{-1} x$, show that $(1-x^2)y_{n+2} = (2n+1) x y_{n+1} + (n^2 m^2) y_n$ 2A.
- Obtain the reduction formula for $\int \sin^n x \ dx$ and hence evaluate $\int_0^{\pi/2} \cos^n x dx$. 2B.
- 2C. A variable plane at a constant distance p from the origin meets the coordinate axes at A, B, C. Through A, B, C planes are drawn parallel to coordinate planes. Show that locus of their point of intersection is $x^{-2} + y^{-2} + z^{-2} = p^{-2}$.
- 3A. Find the nature of the series
 - $\sum_{n=1}^{\infty} \frac{n!2^n}{n^n}$
- (ii) $\frac{x}{1} + \frac{1}{2} \frac{x^3}{3} + \frac{1.3}{24} \frac{x^5}{5} + \frac{1.3.5}{24.6} \frac{x^7}{7} + \dots$
- 3B. Sketch and find perimeter of the curve $r = a (1 - \cos\theta)$, a > 0
- Find the evolute of $y^2 = 4ax$. 3C. (4+3+3)

4A. Evaluate:

(i)
$$\lim_{x \to 0} \left(\frac{a^x + b^x}{2} \right)^{1/x}$$

(ii)
$$\lim_{x \to 0} \frac{\tan x - x}{x^2 \tan x}$$

- 4B. Find the angle between the curves $r^m = a^m \cos m\theta$, $r^m = a^m \sin m\theta$, a > 0.
- 4C. Find the centre and the radius of the circle of intersection by the plane x+4y+z=4 and the sphere $x^2+y^2+z^2-x-z-2=0$. (4+3+3)
- 5A. Find the first three nonzero terms in the Maclaurin's series expansion tan x.
- 5B. The tangents at two points P, Q on the curve $x = a (\theta \sin \theta)$, $y = a (1 \cos \theta)$ are at right angles. Show that if ρ_1 and ρ_2 be the radii of curvature at the points, then show that $\rho_1^2 + \rho_2^2 = 16a^2$.
- 5C. Find the volume of the solid generated by revolution of the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ about the x axis. (4 + 3 + 3)
- 6A. (i) If $u = \tan^{-1} \left(\frac{x^3 + y^3}{x y} \right)$ then show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = (1 4\sin^2 u)\sin 2u$
- 6B. State and prove Lagrange's mean value theorem.
- 6C. Find the maximum possible error in calculating g if $T=2\pi\sqrt{\frac{1}{g}}$, given 1% and 0.5% errors in 1 and T respectively.

(4+3+3)
