

2009-2010

B.A./B.Sc. (Hons.) (PART – I) EXAMINATION (MATHEMATICS)

VECTOR ANALYSIS AND GEOMETRY (MM – 105)

Maximum Marks: 40

Duration: Three Hours

(4242)

Note: Answer all questions.

All questions carry equal marks.

- 1. (a) Chords of the parabola $y^2 = 4ax$ subtend a right angle at the vertex. Find the locus of their middle points.
 - (b) Define diameters, conjugate diameters and find the condition that the lines $Ax^2 + 2Hxy + By^2 = 0$, may the conjugate diameters of the conic $ax^2 + 2hxy + by^2 = 1$,

OR

- (b') Pair of tangents are drawn to the conic $\alpha x^2 + \beta y^2 = 1$, so as to be always parallel to conjugate diameters of the conic $ax^2 + 2hxy + by^2 = 1$. Find the locus of their point of intersection.
- 2 (a) Trace the conic $16x^{2} - 24xy + 9y^{2} + 77x - 64y + 95 = 0,$ OR
 - (a') Find the foci and the eccentricity of the conic $x^2 + 4xy + y^2 2x + 2y 6 = 0$,
 - (b) Find the equation of the asymptotes of the conic $\frac{l}{r} = 1 + e \cos \theta$.
- 3 (a) Show that the equation of the right circular cylinder described on the circle through the points A: (1,0,0), B: (0,1,0) and C: (0,0,1) as the guiding curve is

$$x^{2} + y^{2} + z^{2} - yz - zx - xy = 1$$

(b) Find the equation to the cone whose vertex is (α, β, γ) and the base the parabola $z^2 = 4ax$, y = 0

OR

(b') Find the semi-vertical angle of a right circular cone which has three mutually perpendicular tangent planes.

Contd...2

- 4 (a) A section of surface is obtained by cutting it through a plane. Find the locus of the centres of the section of the surface $ax^2 + by^2 + cz^2 = 1$ if the plane touches $ax^2 + by^2 + \gamma z^2 = 1$
 - (a') Prove that the pole of the plane through the extremities of three conjugate semi-diameters of the ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$ lies on the ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 3$
 - (b) Find the locus of the point of intersection of three mutually perpendicular tangent planes to the surface $ax^2 + by^2 = 2z$
- 5 (a) If $\overline{a}, \overline{b}, \overline{c}$ are non zero vectors and $(\overline{a} \times \overline{b}) \times \overline{c} = \overline{a} \times (\overline{b} \times \overline{c})$, then show that $(\overline{a} \times \overline{c}) \times \overline{b} = 0$. Moreover for four vectors $\overline{a}, \overline{b}, \overline{c}, \overline{d}$ show that $(a \times \overline{b}) \times (\overline{c} \times \overline{d}) = ((\overline{c} \times \overline{d}) \cdot \overline{a})\overline{b} ((\overline{c} \times \overline{d}) \cdot \overline{b})\overline{a}$
 - (b) Define scaler field, Vector field and gradient of a scaler field and show that $\frac{df}{ds} = \overline{\nabla} \cdot \frac{d\overline{r}}{ds}$ and deduce from the above relation that the vector $\overline{\nabla}$ points in the direction in which $\frac{df}{ds}$ has maximum value, also this maximum value is equal to $|\overline{\nabla} f|$

(b') Define the divergence and curl of a vector field and show that $\overline{\nabla} \times (\overline{\nabla} f) = 0$ and $\overline{\nabla} \cdot (\overline{\nabla} \times \overline{a}) = 0$