Reg No.										

MANIPAL INSTITUTE OF TECHNOLOGY (Constituent Institute of Manipal University) MANIPAL-576104

FIFTH SEMESTER B.E. (CSE) MAKE UP EXAMINATION JAN-2008 SUBJECT: THEORY OF COMPUTATION (CSE-301) (REVISED CREDIT SYSTEM)

TIME : 03 HOURS
MAX.MARKS : 50

Instructions to Candidates

- Answer ANY FIVE FULL questions.
- Missing data can be suitably assumed.

1 A.
(i) A path is said to be \qquad if no vertex is repeated.
(ii) Show the Prefix and Suffix of the string w=abbab
(iii) Explain (a) Accepter (b) Transducer

1B. Prove by induction that $\mathrm{S}_{\mathrm{n}+1}=\mathrm{S}_{\mathrm{n}}+(\mathrm{n}+1)$ where

$$
\mathrm{Sn}=\sum_{0}^{\mathrm{n}} \mathrm{i}=\mathrm{n}(\mathrm{n}+1) / 2
$$

1C. Draw the schematic diagram of general automation and explain all its important terms.

2A. Show DFA which accepts any number of a 's followed by a string b, a and followed by strings a 's and b 's.

2B. Convert NFA to an equivalent DFA.

2C. Find an NFA which accepts the regular expression L (r) where

$$
\begin{equation*}
\mathrm{r}=(\mathrm{a}+\mathrm{bb})^{*}\left(\mathrm{ba}^{*}+\lambda\right) \tag{3}
\end{equation*}
$$

3A. Find L1 / L2 for

$$
\begin{equation*}
\mathrm{L} 1=\mathrm{L}\left(\mathrm{a}^{*} \mathrm{baa}^{*}\right) \text { and } \mathrm{L} 2=\mathrm{L}\left(\mathrm{ab}^{*}\right) \tag{4}
\end{equation*}
$$

3B. Show that $L=\left\{w^{R} / w \in(0,1)^{*}\right\}$ is not regular using pumping lemma concept.

3C. Show the CFG for the regular expression
(i) $\quad(011+1)^{*}(01)^{*}$
(ii) Check for the ambiguity of the grammar
$\mathrm{S} \rightarrow \mathrm{aB} \mid \mathrm{bA}$
$\mathrm{A} \rightarrow \mathrm{aS}|\mathrm{bAA}| \mathrm{a}$ $\mathrm{B} \rightarrow \mathrm{bS}|\mathrm{aBB}| \mathrm{b}$

4A. Simplify the following grammar
$\mathrm{S} \rightarrow \mathrm{aA}|\mathrm{a}| \mathrm{Bb} \mid \mathrm{cC}$
$\mathrm{A} \rightarrow \mathrm{aB}$
$\mathrm{B} \rightarrow \mathrm{a} \mid \mathrm{aA}$
$\mathrm{C} \rightarrow \mathrm{cCD}$
D \rightarrow ddd
4B. Prove and state the theorem for Chomsky Normal Form.
4C. Obtain a PDA to accept the language
$L(M)=\left\{w^{R} / w^{R} \in(a, b)^{*}\right\}$ with ID.
5A. Explain the conditions for DPDA.
5B. Show PDA for the following grammar
$\mathrm{S} \rightarrow \mathrm{aA}$
$\mathrm{A} \rightarrow \mathrm{aABC}|\mathrm{bB}| \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{b}$
$\mathrm{C} \rightarrow \mathrm{c}$

5C. State and prove the theorem that the family of CFL is closed under Union,
Concatenation and Star Closure.
6A. Give the definition for Turing Machine.
6B. Design a TM that accepts $L=\left\{a^{n} b^{n}: n \geq 1\right\}$ with ID.
6C. Explain the TM with Stay Option.

