Reg No.										

MANIPAL INSTITUTE OF TECHNOLOGY (Constituent Institute of MAHE- Deemed University) MANIPAL-576104

V SEMESTER B.E. (CSE)
Date . 06

SUBJECT: Theory of Computation

TIME :3 HOUR
MAX.MARKS : 50

Instructions to Candidates

1. Answer Any Five questions.
2. Mention Clearly each step involved in solving the problem.
3. Answer to the point and avoid unnecessary explanation.

1A. Prove that by induction $1+3+5+\ldots \ldots+r=n^{2}$ for all $n>0$, where r is an odd integer and n is the number of terms in the sum. 3Marks

1B. Construct an NFA accepting strings that have a 1 either 3 or 4 positions from the end hence find regular expression. 4Marks

1C. Design a finite automaton which checks whether a given decimal number is divisible by three.

2A. Minimize the states in the following deterministic finite automaton (DFA) depicted in the following diagram. Where Q_{3} and Q_{5} are final states and Q 0 is the initial state of the following DFA.

0.1

4Marks
2B. Find a regular expressions for the language
$L=\left\{\mathbf{w} \boldsymbol{€}\{\mathbf{a}, \mathbf{b}\}^{*}:\right.$ Number of $\mathbf{a} ' s$ in w is even and number of b 's in w is odd $\}$ by reducing equivalent generalized transition graph.

3Marks
2C. State and prove Pumping Lemma for regular languages.
3A. Find an s-grammar for $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$
3B. Remove all undesirable productions from the following grammar.

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathbf{a A} \mid \mathbf{a B B}, \\
& \mathbf{A} \rightarrow \mathbf{a a A} \mid \lambda \\
& \mathrm{B} \rightarrow \mathbf{b C} \mid \mathbf{b b C}, \\
& \mathbf{C} \rightarrow \mathbf{B} .
\end{aligned}
$$

What language does this grammar generate?
4 Marks
3C Explain the concept of an Exhaustive Search Parsing method.
4 Marks
4A. Construct an NPDA for accepting the language
$\mathbf{L}=\left\{\mathbf{w c w}^{\mathbf{R}} \mid \mathbf{w} €\{\mathbf{a}, \mathbf{b}\}^{*}\right\}$
3 Marks
4B. State Pumping Lemma and hence prove that
$\mathrm{L}=\left\{\mathbf{a}^{\mathbf{n}!} \mid \mathbf{n} \geq \mathbf{1}\right\}$ is not a context free language.
4Marks
4C.Prove that family of context free languages is closed under union 3 Marks
5A.Design a Turing Machine to compute the function

$$
\mathbf{f}(\mathbf{w})=\mathbf{w}^{\mathbf{R}} \quad \text { where } \mathbf{w} €\{0,1\}^{+} \quad 3 \text { Marks }
$$

5B.Prove that class of Off Line Turing machines is equivalent to class of Standard
Turing Machines.
4 Marks
5C. Discuss the concept of Universal Turing Machine 3 Marks
6A. Let S be an infinite countable set. Then prove that its power set is not countable.
4 Marks
6B. Define Context sensitive language and give one example for the same. 3 Marks
6C. Write a short note on Turing Machine Halting problem.
3 Marks

