

MANIPAL INSTITUTE OF TECHNOLOGY (Constituent Institute of MAHE- Deemed University) MANIPAL-576104

V SEMESTER B.E. (CSE) Date .06

SUBJECT: Theory of Computation

TIME :3 HOUR

MAX.MARKS: 50

Instructions to Candidates

- 1. Answer <u>Any Five</u> questions.
- 2. Mention Clearly each step involved in solving the problem.
- 3. Answer to the point and avoid unnecessary explanation.

1A. Prove that by induction $1+3+5+\ldots+r = n^2$ for all n>0, where r is an odd integer and n is the number of terms in the sum. 3Marks

1B. Construct an NFA accepting strings that have a 1 either 3 or 4 positions from the end hence find regular expression. 4Marks

1C. Design a finite automaton which checks whether a given decimal number is divisible by three. 3 Marks

2A. Minimize the states in the following deterministic finite automaton (DFA) depicted in the following diagram. Where Q_3 and Q_5 are final states and Q0 is the initial state of the following DFA.

	4Marks
2B. Find a regular expressions for the language	
L= {w \in {a, b} ^{*:} Number of a's in w is even and number of b's in w is odd}	
by reducing equivalent generalized transition graph. 2C. State and prove Pumping Lemma for regular languages.	3Marks
	3Marks
3A. Find an s-grammar for L= { $a^n b^n n \ge 0$ }	2 Marks
3B. Remove all undesirable productions from the following grammar.	
$S \rightarrow aA \mid aBB$,	
$A \rightarrow aaA \lambda$	
$B \rightarrow bC bbC,$	
C→B.	
What language does this grammar generate?	4 Marks
3C Explain the concept of an Exhaustive Search Parsing method.	
	4 Marks
4A. Construct an NPDA for accepting the language	
$L=\{wcw^{R} w \in \{a,b\}^{*}\}$	3 Marks
4B.State Pumping Lemma and hence prove that	
$L = \{ a^{n!} n \ge 1 \}$ is not a context free language.	4Marks
4C.Prove that family of context free languages is closed under union	3 Marks
5A.Design a Turing Machine to compute the function	
$\mathbf{f}(\mathbf{w}) = \mathbf{w}^{\mathbf{R}}$ where $\mathbf{w} \in \{0, 1\}^+$	3 Marks
5B.Prove that class of Off Line Turing machines is equivalent to class of Standa	rd
Turing Machines.	4 Marks
5C. Discuss the concept of Universal Turing Machine	3 Marks
6A. Let S be an infinite countable set. Then prove that its power set is not countable set.	able.
• •	4 Marks
6B. Define Context sensitive language and give one example for the same.	3 Marks
6C. Write a short note on Turing Machine Halting problem.	3 Marks