Reg.No

MANIPAL INSTITUTE OF TECHNOLOGY
MANIPAL UNIVERSITY, MANIPAL - 576104

FIRST SEMESTER B.E DEGREE END SEMESTER EXAMINATION- NOVEMBER 2010

SUB: ENGG. MATHEMATICS I (MAT - 101)
 (REVISED CREDIT SYSTEM)

Time : $\mathbf{3}$ Hrs.
Max.Marks : 50
\& Note : a) Answer any FIVE full questions.
b) All questions carry equal marks

1A. Find the $\mathrm{n}^{\text {th }}$ derivatives of
i) $\frac{3 x^{2}-5 x-1}{2 x^{3}-3 x^{2}+1}$
(ii) $x e^{2 x} \sin ^{2} 2 x$

1B. A radius vector intersects the curve $\mathrm{r}=a e^{\theta \cot \alpha}$ at consecutive points $\mathrm{P}_{0}, \mathrm{P}_{1} \ldots \ldots, \mathrm{P}_{\mathrm{n}} \ldots$ If ρ_{m} and ρ_{n} denotes the radii of curvature at P_{m} and P_{n}, then show that $\frac{1}{m-n} \log \left(\frac{\rho_{m}}{\rho_{n}}\right)$ is independent of m and n for all $m \neq n$.

1C. Find the reflection of the point $(1,3,4)$ through the plane $2 x-y+z+3=0$.

$$
(4+3+3)
$$

2A. Find the evolute of $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$.
2B. Evaluate :
(i) $\int_{0}^{2 a} x^{4} 2 a x-x^{2}-1 / 2 d x$
(ii) $\int_{0}^{\infty} \frac{d x}{a^{2}+x^{2^{n}}}$

2C. If $y=\frac{d^{n}}{d x^{n}} x^{2}-1$, then prove that $\left(1-x^{2}\right) y_{2}-2 x y_{1}+n(n+1) y=0$.

3A. Find the angle between the curves $r^{2} \sin 2 \theta=4$, and $r^{2}=16 \sin 2 \theta$

3B. Test the Nature of the following series
(i) $\frac{3}{4}+\frac{3.6}{4.7}+\frac{3 \cdot 6 \cdot 9}{4 \cdot 7 \cdot 10}+\ldots$
(ii) $\left(\frac{2^{2}}{1^{2}}-\frac{2}{1}\right)^{-1}+\left(\frac{3^{3}}{2^{3}}-\frac{3}{2}\right)^{-2}+\left(\frac{4^{4}}{3^{4}}-\frac{4}{3}\right)^{-3}+\ldots \ldots$

3C. Trace the following curve with explanation $y\left(1-x^{2}\right)=x^{2}$

4A. State Cauchy's mean value theorem and verify it for
$f(x)=\sqrt{x}$ and $g(x)=\frac{1}{\sqrt{x}}$ in $[a, b]$
4B. Find the magnitude and equations of the line of shortest distance between the lines $\frac{x-3}{1}=\frac{y-5}{-5}=\frac{z-7}{1}$ and $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$
Also find the points where it intersects the lines.
4C. Obtain the first three nonzero terms in the Maclaurin's series expansion of $f(x)=\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$.

5A. If $u=f\left(x^{2}+y^{2}+z^{2}\right)$ where $x=r \cos \theta \cos \phi, y=r \cos \theta \operatorname{Sin} \phi, z=r \operatorname{Sin} \theta$ find $\frac{\partial \mathrm{u}}{\partial \theta}$ and $\frac{\partial \mathrm{u}}{\partial \phi}$.

5B. Evaluate the following limits
(i) $\operatorname{lt}_{x \rightarrow a} \frac{a^{x}-x^{a}}{x^{x}-a^{x}}$
(ii) $\operatorname{lt}_{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{\frac{1}{x^{2}}}$

5C. A plane passes through a fixed point (a, b, c). Show that the locus of the foot of the perpendicular from the origin on to the plane is the sphere,

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}-a x-b y-c z=0 \tag{3+4+3}
\end{equation*}
$$

6A. Find the region of convergence of the following power series.
(i) $1+\frac{3}{7} x+\frac{3.6}{7 \cdot 10} x^{2}+\frac{3 \cdot 6.9}{7 \cdot 10.13} x^{3}+\ldots$.
(ii) $\frac{1}{2}+\frac{2}{3} x+\left(\frac{3}{4}\right)^{2} x^{2}+\left(\frac{4}{5}\right)^{3} x^{3}+\ldots$

6B. Find the volume of the solid obtained by revolving the curve $y^{2}(2 a-x)=x^{3}$ about its asymptote.

6C. If the sides of a plane triangle ABC vary in such a way that its circum - radius remains a constant, then prove that

$$
\frac{\delta a}{\cos A}+\frac{\delta b}{\cos B}+\frac{\delta c}{\cos C}=0
$$

