F	THFE IRST SEMESTER B.E DEGREE MAKE UP EXAMINATION- DECEMBER 201	0
SUB: ENGG. MATHEMATICS I (MAT – 101) (REVISED CREDIT SYSTEM) Time : 3 Hrs. Max.Marks : 50		
Ľ	Note : a) Answer any FIVE full questions. b) All questions carry equal marks	
1A.	Find the n th derivatives of the following (i) $\frac{x^2}{2x^2 + 7x + 6}$ (ii) coshx. cos3x	
1B.	Trace the following curve with explanations $y^2 (a - x) = x^3$, $a > 0$	
1C.	Find the image of the line $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{4}$ in the plane 2x +	y + z = 6. (4 + 3-
2A.	If $y = \sin m \sin^{-1} x$, show that $(1 - x^2)y_{n+2} = (2n+1)xy_{n+1} + (n^2)y_{n+2}$	$(2 - m^2) y_n$
2B.	Obtain the reduction formula for $\int \sin^n x dx$ and hence evaluate	cos ⁿ xdx
2C.	A variable plane at a constant distance p from the origin meets axes at A, B, C. Through A, B, C planes are drawn parallel to coor Show that locus of their point of intersection is $x^{-2} + y^{-2} + z^{-2} = p^{-2}$	the coord rdinate pl 2 . (4 + 3 +
3A.	Find the nature of the series (i) $\sum_{n=1}^{\infty} \frac{n!2^n}{n^n}$ (ii) $\frac{x}{1} + \frac{1}{2} \frac{x^3}{3} + \frac{1.3}{2.4} \frac{x^5}{5} + \frac{1.3.5}{2.4.6} \frac{x^7}{7}$	+
3B.	Sketch and find perimeter of the curve $r = a (1 - \cos\theta)$, $a > 0$	
3C.	Find the evolute of $y^2 = 4ax$.	(4 + 3+

4A. Evaluate :

(i)
$$\lim_{x \to 0} \left(\frac{a^x + b^x}{2} \right)^{1/x}$$

(ii)
$$\lim_{x \to 0} \frac{\tan x - x}{x^2 \tan x}$$

- 4B. Find the angle between the curves $r^{m} = a^{m} \cos m\theta$, $r^{m} = a^{m} \sin m\theta$, a > 0.
- 4C. Find the centre and the radius of the circle of intersection by the plane x+4y+z = 4 and the sphere $x^2 + y^2 + z^2 x z 2 = 0$. (4 + 3+ 3)
- 5A. Find the first three nonzero terms in the Maclaurin's series expansion tan x.
- 5B. The tangents at two points P, Q on the curve $x = a (\theta \sin\theta)$, $y = a (1 \cos\theta)$ are at right angles. Show that if ρ_1 and ρ_2 be the radii of curvature at the points, then show that $\rho_1^2 + \rho_2^2 = 16a^2$.
- 5C. Find the volume of the solid generated by revolution of the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ about the x axis.

$$(4 + 3 + 3)$$

6A. (i) If
$$u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$$
 then show that
 $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = (1 - 4\sin^2 u)\sin 2u$

- 6B. State and prove Lagrange's mean value theorem.
- 6C. Find the maximum possible error in calculating g if $T=2\pi\sqrt{\frac{1}{g}}$, given 1% and 0.5% errors in 1 and T respectively.