\square

MANIPAL INSTITUTE OF TECHNOLOGY, MANIPAL

(A Constituent Institute of Manipal University, Manipal)

11 December 2010

ANALOG ELECTRONIC CIRCUITS (ELE 209)

Time: 3 hours
Max. Marks: 50
Note : Answer any FIVE full questions. Refer Table-1 for h-parameters.
1A. Determine V_{0} for the circuit shown in Fig 1(A).
1B. Define Transition time, storage time and reverse recovery time with respect to a PN junction diode
1C. Plot the waveform by determining V_{0} for the circuit shown in Fig 1(C).
2A. Determine the transistor quiescent voltages and currents of the amplifier shown in Fig 2(A). Assume $V_{B E}=0.7 \mathrm{~V}$.
2B. From the fundamental derive an expression for $S\left(\mathrm{I}_{\text {CBO }}\right)$, for voltage divider biasing circuit with emitter resistance R_{E}.
2C. Draw the small signal h- parameter model of a Darlington pair transistor connection. Hence list out its merits and demerits.

3A. Design a voltage divider biasing circuit to meet the following specifications, $\mathrm{V}_{\mathrm{cc}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V}$, $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \beta=100, \mathrm{~S} \leq 5$ and $\mathrm{R}_{\mathrm{E}}=100 \Omega$. Hence draw the circuit.
3B. For the cascaded amplifier shown in Fig 3 (B) determine $A_{v}, A_{v S}=v_{0} / v_{s}$, and R_{i} using approximate h-parameter transistor model.

4A. An NMOS has $\mathrm{V}_{\mathrm{t}}=0.5 \mathrm{~V}$ and $\frac{\mathrm{W}}{\mathrm{L}}=10, \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=200 \mu_{\mathrm{A}} / \mathrm{v}^{2}$. Determine
i. The value of the $V_{G S}$ to operate in saturation region with a dc current $\mathrm{I}_{\mathrm{DC}}=100 \mathrm{~mA}$.
ii. Value of the $V_{G S}$ required to cause the device to operate 1000Ω resistor for very small ac, v_{DS} signal.

4B. The MOSFET shown in Fig. 4(B) has $\mu_{n} C_{o x} \frac{W}{L}=0.4 m A / V^{2}, V_{t}=1 \mathrm{~V}, \mathrm{r}_{0}=40 \mathrm{~K}$. Determine all the quiescent current and voltages and hence determine the output voltage when sinusoidal $v_{i}=0.8 \mathrm{mv}$ is applied at the input of the amplifier.
4C. Derive an expression for current gain, the input resistance and output resistance of a single common gate MOSFET amplifier

5A. In the amplifier shown in the circuit Fig. 5(A), both the MOSFETs are having $\mathrm{V}_{\mathrm{T}}=0.7 \mathrm{~V}$, $\mu_{n 1} C_{o x 1}=\mu_{n 2} C_{o x 2}=500 \mu A / V^{2}$, aspect ratio of MOSFET M1 $=\frac{W_{1}}{L_{1}}=100$ and the drain current of MOSFET M2 $=\mathrm{I}_{\mathrm{D} 2}=2 \mathrm{~mA}$. Determine
i. The quiescent $V_{G S}$ and $V_{D S}$ of both the MOSFETs and aspect ratio $\left(\frac{W_{2}}{L_{2}}\right)$ of M2
ii. Draw the small signal equivalent circuit and hence find small signal voltage gain from v_{s} to v_{0}.
iii. Maximum sinusoidal input that can be applied before the output begin to clip.

5B. For a transformer coupled class A power amplifier, derive an expression for efficiency and hence obtain maximum efficiency. Also list any two disadvantages of the same.

6A. Determine the lower and upper cut off frequency of the CE amplifier shown in Fig 6(A). Hence find the band width. Assume the $\mathrm{R}_{0}=50 \mathrm{~K}, \mathrm{C}_{1}=1 \mu \mathrm{~F}, \mathrm{C}_{2}=4 \mu \mathrm{~F}, \mathrm{C}_{0}=1 \mathrm{nf}$ and $\mathrm{C}_{\mathrm{E}}=10 \mu \mathrm{~F}$.
6B. Determine the output voltage $V_{0}, V_{C E}$ and currents through all the resistance in the circuit shown in Fig. 6(B), where $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$
6 C . Design a 7805 variable voltage regulator to get an Output voltage range 6 V to 16 V . Take $\mathrm{R}_{1}=1 \mathrm{~K}, \mathrm{I}_{\mathrm{adj}}=4.3 \mathrm{~mA}$. Draw the circuit.

Fig 3(B)

Fig 5(A)

Fig 6(A)

Fig. 6(B)

h-parameters	CE	CB	CC
h_{i}	1.1 K	1.1 K	21.6 ohms
h_{r}	2.5×10^{-4}	1	2.9×10^{-4}
h_{f}	50	-51	-0.98
h_{0}	$24 \mu \mathrm{mho}$	$25 \mu \mathrm{mho}$	$0.49 \mu \mathrm{mho}$

Table-1

