Reg. No. : \square

MANIPAL INSTITUTE OF TECHNOLOGY, MANIPAL

(A Constituent Institute of Manipal University, Manipal)

THIRD SEMESTER B.E. DEGREE MAKEUP EXAMINATION (REVISED CREDIT SYSTEM)
 22 July 2009
 ANALOG ELECTRONIC CIRCUITS (ELE 209)

Time: 3 hours
Max. Marks: 50

Note : \quad| Answer any FIVE full questions. |
| :--- |
| Missing data, if any, may be suitably assumed. |

1A. Determine $\mathrm{I}_{\mathrm{D}}, \mathrm{V}_{0}$ for the circuit shown in Figure $Q 1 A$, given $\mathrm{V}_{\mathrm{D}}=0.7 \mathrm{~V}$.
1B. Draw the output voltage for the circuit shown in Figure Q1B.
1C. Write a technical note on construction and applications of photo diode.
2A. Plot the waveform of V_{0}, for the circuit shown in Figure Q2A.
2B. Design a voltage divider bias circuit to meet the following specifications. $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CE}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \beta_{\mathrm{dc}}=100, \mathrm{~S}\left(\mathrm{I}_{\mathrm{Co}}\right) \leq 5, \mathrm{R}_{\mathrm{E}}=280 \Omega$.
2C. Derive the expression of stability factor $S\left(I_{C O}\right)$ and $S\left(V_{B E}\right)$ for collector-base feedback bias circuit.

3A. Draw the low frequency small signal h-parameter model for the circuit shown in figure Q3A. Also identify the configuration employed in the circuits for both transistors. (02)
3B. For the circuit shown determine $A_{v}, A_{v s}, R_{o}$ and R_{i}. Given $h_{i e}=1.1 K, h_{r e}=2.5 \times 10^{-4}, h_{f}=50$, $h_{0}=24 \mu \mathrm{~A} / \mathrm{V}$.
3C. Derive expression for calculating the voltage gain A_{v}, current gain A_{I}, input impedance Z_{i} and output admittance Y_{o} of an amplifier using hybrid parameters.

4A. Discuss the effect of cascading of amplifiers on bandwidth and gain.
4B. For the network shown in Figure Q4B, find $V_{G}, I_{D Q}, V_{G S Q}, V_{D}, V_{S}$ and $V_{D S Q}$. Given $I_{D S S}=10 \mathrm{~mA}$, $V_{P}=-4 V$.
4C. For the CE amplifier shown in Figure Q4C, determine the bandwidth if $\mathrm{h}_{\mathrm{ie}}=1.2 \mathrm{~K}, \mathrm{~h}_{\mathrm{fe}}=100$, $\mathrm{r}_{0}=\infty$.

5A. Write a brief note on distortion in power amplifiers
5B. For a transformer coupled class-A power amplifier, derive an expression for efficiency and hence obtain maximum efficiency. Also list advantages and disadvantages of the same.
(04)

5C. A series fed class A amplifier has $R_{B}=2 K, R_{C}=20 \Omega, \beta=25$ and $V_{C C}=25 V$. Draw the circuit and determine DC input power, efficiency, and power dissipated. Assume the peak value of base current due to AC input voltage is 10 Ma .

6A. Determine the output power and Zener diode current for the circuit shown in Figure Q6A. Given $\beta=75$.
6B. Explain the working of a transformer based series voltage regulator.
6C. Design a LM317 based variable voltage regulator for 5 to 15 V range supplying not more than 100 mA load current.

figure Q4C

figure Q6A

