Seat No. : _____

[Max. Marks: 70

(4)

(6)

FBCA-04

April-2007 **Advanced Mathematics** (New Course)

Time : 3 Hours]

Instructions :

- There are **five** questions. (i)
- (ii) All questions carry 14 marks.
- (iii) Draw the figures wherever required.
- C.Nam.con (iv) Use of simple calculator is permitted.

1. (A) Define following terms : (any **four**)

- Intersection set. (1)
- (2)Subset.
- Quadratic function. (3)
- (4) Break-Even Point.
- (5) Many-one function.
- (B) If A and B are two sets, then prove that the number of element $n(A \cup B) = n(A) + n(A \cup B) = n(A) + n(A) + n(A \cup B) = n(A) + n$ $n(B) - n (A \cap B)$ with Venn diagram. (4)

OR

If A, B and C are three sets then, prove that $A - (B \cup C) = (A - B) \cap (A - C)$ by usual notations. (4)

(C) Attempt the following : (any **two**)

If $U = \{x/1 \le x \le 8, x \in N\}$ A = $\{x/x \le 4, x \in N\}$, (1)B = {x/1 < x < 7, x is even no.} and C = {1, 2, 5} then find $A \cup (B - C)$ (i) (ii) $A \Delta B$ (iii) $\mathbf{B} \times \mathbf{C}$ (iv) $(A \cap B)$

(2) If
$$f(x) = \left[\frac{1-x}{1+x}\right]$$
, $x \in \mathbb{R}$, then prove that $f(x) + f(1/x) = 0$.

FBCA-04

P.T.O.

- (3) The fixed cost of a factory is Rs. 90,000 and the variable cost per unit of production is Rs. 150. If the selling price per unit is Rs. 240, then find :
 - (1) Revenue and cost function.
 - Break-Even Point. (2)
 - If selling price is increased by Rs. 10, then find new Break-Even (3) Point.

(4)

(6)

2. (A) When f (x) is said to be continuous at x = a? Also check the continuity of f(x) at *x* = 5. (4)

f(x)	=	$\frac{x^2 - 25}{x - 5}$,	<i>x</i> ≤ 5	
	=	5	,	<i>x</i> = 5	
	=	2x - 5	,	<i>x</i> > 5	
ing terms : (any four)					
Matri	v				
olumn Matrix.					
ose of Matrix					

- (B) Define following terms : (any **four**)
 - (1)Matrix.
 - Square Matrix. (2)
 - Row–Column Matrix. (3)
 - (4) Transpose of Matrix
 - (5) Identity Matrix.
- (C) Solve following problems (any **two**) :

(1) If
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix}$$
 $B = \begin{bmatrix} 1 & -2 \\ -1 & 0 \\ 2 & -1 \end{bmatrix}$ then

- Compute AB. (i)
- Is BA defined ? (ii)

(2) If
$$P = \begin{bmatrix} 9 & 1 \\ 4 & 3 \end{bmatrix}$$
 and $Q = \begin{bmatrix} 1 & 5 \\ 7 & 12 \end{bmatrix}$, find Matrix 'X' if $3P + 5Q + 2X = 0$.

(3) If
$$A = \begin{bmatrix} 4 & 1 & 3 \\ 2 & 0 & 5 \\ 1 & 3 & 0 \end{bmatrix} B = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 4 & 3 \\ 2 & 1 & 5 \end{bmatrix}$$
, then prove that
(i) $(A + B)^{T} = A^{T} + B^{T}$
(ii) $A + A^{T}$ is a symmetric matrix.

FBCA-04

- 3. (A) Evaluate following limits : (any two)
 - (i) $\lim_{x \to 4} \frac{x^3 64}{2x^2 32}$
 - (ii) $\lim_{x \to 0} \frac{7^{2x} 5^{3x}}{x}$

(iii)
$$\lim_{x \to 3} \quad \frac{\sqrt{x} - \sqrt{3}}{\sqrt{x+1} - 2}$$

(iv)
$$\lim_{n \to \infty} \left[1 - \frac{2n}{5} \right]^{3/n}$$

(B) Find the equation of a line parallel to x - 2y + 3 = 0 and passing from (2, -3). (4) OR

Find the equation of the line passing through the points A(3, -7) and B(-4, 9).

- (C) Attempt the following : (any **two**)
 - (1) Prove that the points (7, 0), (6, -2), (3, 4) and (4, 6) formed a parallelogram.
 - (2) Find the area of \triangle ABC whose vertices are A(2, 3), B(8, 5) and C (4, 7).
 - (3) Find angle between the line 5x y + 2 = 0 and 2x 3y + 3 = 0.
- 4. (A) Find the area bounded by *x*-axis and the curve $y = x^2 3x + 2$. (4)

(B) A company has the total cost $C = 500 + \frac{1}{2} X^2$ and the total revenue R = 200x for x unit of production. So find (4)

- (i) Total units for maximum profit.
- (ii) Total maximum profit.
- (C) Find dy/dx with respect to x (any **three**)

(1)
$$y = 2^x + \log 2 + \frac{1}{x^2}$$

(2)
$$y = \sqrt{4x^2 - 5}$$

(3)
$$y = e^x \tan x$$

(4)
$$y = \frac{x^3}{\log x}$$

(5)
$$x^2 + y^2 = 2xy$$

FBCA-04

P.T.O.

(6)

(4)

(6)

- 5. (A) (i) Define Order and Degree of differential equation.
 - (ii) Give Order and Degree of following Diff. equation. (4)

(4)

(6)

(1)
$$\left(\frac{d^3y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^4 + 2y = 0.$$

(2) $\sqrt{\frac{d^2y}{dx^2}} = 3 \frac{dy}{dx} + x$
(3) $x^2 \frac{d^2y}{dx^2} + y \left(\frac{dy}{dx}\right)^4 + y^4 = 0$

(B) Attempt the following (any **two**) :

(i) Solve
$$\frac{dy}{dx} = \frac{3+x}{3+y}$$

(ii) Solve $(2x + 3y + 5) dx + (3x + 5y + 7) dy = 0$
(iii) Solve $(2x + 3y + 5) dx + (3x + 5y + 7) dy = 0$

(iii) Show that $y = Ax^2 + Bx$ is a solution of $\frac{d^2y}{dx^2} - \frac{z}{x} \cdot \frac{dy}{dx} + \frac{zy}{x^2} = 0$

(C) Evaluate following integrals (Any three) :

(1)
$$\int \sqrt[3]{x} + 5 + 2/x \, dx$$

(2) $\int \frac{3x^2}{\sqrt{x^3 - 1}} \, dx$
(3) $\int \frac{2x + 5}{(x + 2)(x + 3)} \, dx$
(4) $\int_{1}^{2} (3x - 2)^2 \, dx$
(5) $\int_{0}^{\pi/2} \cos^8 x \, dx$

FBCA-04

Seat No. : _____

[Max. Marks : 50

(6)

FBCA-04

April-2007 Advanced Mathematics (Old Course)

Time : 3 Hours]

- **Instructions :** (1) Figures to the right indicate full marks.
 - (2) Scientific Calculator is not allowed.

1. (a) If A, B and C be any three sets, then prove that $A - (B \cap C) = (A - B) \cup (A - C)$. (4)

- (b) Attempt any **two** parts :
 - (1) (i) If $A = \{1, 2, 3, 4\}$ and $B = \{4, 5, \}$, find $A \Delta B$ and $A \times B$.
 - (ii) If A = {a, b, c}, B = {b, d}, C = {b, c}, then verify that A × (B \cup C) = (A × B) \cup (A × C).
 - (2) If the daily cost of production for x units of a manufactured product is given by c(x) = 15x + 15,000. Answer the following :
 - (i) If each unit is sold for Rs. 25, determine the minimum number of units that should be produced and sold to ensure no loss.
 - (ii) If the selling price is decreased by Rs. 5, per unit what would be the break-even point ?

(3) If
$$f(x) = x^5 - 2x + \frac{1}{x}$$
, prove that $f(x) + f(-x) = 0$.

- 2. (a) Find maximum and minimum value of the function $f(x) = 2x^3 + 9x^2 60x + 25$. (4)
 - (b) Attempt any **two** parts :
 - (1) Evaluate :

(i)
$$\lim_{x \to 3} \frac{x^3 - 27}{x - 3}$$

(ii) $\lim_{n \to \infty} \frac{n^2 + 2n - 1}{(n + 1)(2n + 1)}$

FBCA-04

5

P.T.O.

(6)

(2) Show that the function

$$f(x) = \begin{cases} \frac{2}{5-x} , & x < 3\\ 5-x , & x \ge 3 \end{cases}$$
 is

- (i) discontinuous from the left at x = 3.
- (ii) Continuous from the right at x = 3.
- (3) Differentiate the following w.r.t. *x*.

(i)
$$y = \frac{e^{2x}}{x^2 + 2x + 1}$$

(ii) $y = e^x [(4x - 1)^2]$

3. (a) Write the reduction formula of $\int_{0}^{\pi/2} \sin^{n} x \, dx$. Hence evaluate $\int_{0}^{\pi/2} \sin^{8} x \, dx$. (4)

(b) Evaluate the following integrals (any **three**): (6)

(i)
$$\int \frac{x^{7/2} + x^8 + 1}{x^{5/2}} dx$$

(ii) $\int x \cdot \log x dx$
(iii) $\int \frac{1}{(x+1)(x-2)} dx$
(iv) $\int_{-2}^{-1} \left(\frac{1}{x^2} - \frac{1}{x^3}\right) dx$

- 4. (a) Find the equation of a straight line which makes intercepts of a and b on x-axis and y-axis respectively. (4)
 - (b) Attempt any **two** parts :
 - (i) Find the equation of lines passing through the intersection of 4x 3y 1 = 0and 2x - 5y + 3 = 0 and perpendicular to 5x + 4y = 6.

(6)

FBCA-04

- (ii) In what ratio is the line joining the points A(4, 4) and B(7, 7) divided by P(−1, −1) ?
- Show that the points (4, -5), (8, 1), (14, -3) and (10, -9) are the vertices of (iii) a square.

2.001

5. Obtain the order and degree of the following differential equations (any two) : (4) (a)

(i)
$$(2x+3) \frac{d^3y}{dx^2} + \frac{dy}{dx} = \left(\frac{dy}{dx}\right)^2$$

(ii) $\sqrt{\frac{d^2y}{dx^2}} = 5 \frac{dy}{dx}$
(iii) $\left(\frac{d^4y}{dx^3}\right)^5 + \left(\frac{d^2y}{dx^2}\right)^3 = 3y$

Solve the following differential equations (any **two**) : (b)

(6)

- (i) $\frac{\mathrm{d}y}{\mathrm{d}x}$ + 5y = e^{-x}

(i)
$$dx + 3y - e$$

(ii) $(2x + 3y + 5) dx + (3x + 5y + 6) dy = 0$
(iii) $(x^2 + y^2) \frac{dy}{dx} = xy$