N . A	100	w.	Marie	Jul.	
M		rv	Æ.	ы	н
-74 A	AGE!	w	ω×	w	

Reg:	 	 	 		 	
Name						

THIRD SEMESTER MCA DEGREE EXAMINATION - JUNE 2006 MCA 2K 301 - NUMERICAL ANLYSIS & OPTIMIZATION TECHNIQUES

Time: 3 Hours Marks: 100

Answer any five Questions

1

- Using Regula-Falsi method, find the positive root of the equation x³+2x²+10x-20=0, correct to three places of decimals
- Solve by Crout's triangularisation method, the system of equations x+y+2z=7. 3x+2y+4z=13. 4x+3y+2z=8

2

a. Find the values of y at x=21 and x=28 from the following table

X	20	23	26	29
y	0.3420	0.3907	0.4384	0.4848

b Using Lagrange's interpolation formula find y (6) from the following data

X	1	2	7	8
y	4	5	6	7

3.

a. Find dy/dx and d²y/dx² at x=0, from the following data

X	O.		2	3	4
y	4	8	5	7	6

b. Evaluate of 1 e^{x2} dx, using Simpson's rule and by dividing the range of integration in to 4 equal parts.

4.

- Using Taylor's series method, solve the equation dy/dx=x²+y², given y=1, when x=0 and get y (0.1).
- b. Use Euler's method to solve the equation dy/dx=xy given y (0) =1 and find y (0.4).

5.

Using Runge-Kutta method, solve the equations dy/dx=y-x, given y(0) = 2 and taking h=0.1 and get the value of y(0.2) in two steps

6.

Using Simplex method, solve the LPP Maximize $z=5x_1+3x_2$ subject to the constraints $x_1+x_2 \le 2$, $5x_1+2x_2 \le 10$, $3x_1+8x_2 \le 12$ $x_1,x_2 \ge 0$

PTO