Question Booklet Series : A

Important : <u>Please consult your Admit Card / Roll No. Slip before filling your Roll Number on the Test Booklet</u> and Answer Sheet.

Roll No.	In Figures	In Words		
O.M.R. An	swer Sheet Serial No.			
	Signature	e of the Candidate :		

Subject : M. Sc. (Hons. School/2 Year Course)-Chemistry

Number of Ouestions : 75

Maximum Marks : 75

DO NOT OPEN THE SEAL ON THE BOOKLET UNTIL ASKED TO DO SO

INSTRUCTIONS

Time: 90 minutes

- 1. Write your Roll No. on the Question Booklet and also on the OMR Answer Sheet in the space provided and nowhere else.
- 2. Enter the Subject and Series Code of Question Booklet on the OMR Answer Sheet. Darken the corresponding bubbles with **Black Ball Point/Black Gel pen.**
- 3. Do not make any identification mark on the Answer Sheet or Question Booklet.
- 4. To open the Question Booklet remove the paper seal (s) gently when asked to do so.
- 5. Please check that this Question Booklet contains **75** questions. In case of any discrepancy, inform the Assistant Superintendent within 10 minutes of the start of test.
- 6. Each question has four alternative answers (A, B, C, D) of which only one is correct. For each question, darken only one bubble (A or B or C or D), whichever you think is the correct answer, on the Answer Sheet with **Black Ball Point / Black Gel pen.**
- 7. If you do not want to answer a question, leave all the bubbles corresponding to that question blank in the Answer Sheet. No marks will be deducted in such cases.
- 8. Darken the bubbles in the OMR Answer Sheet according to the Serial No. of the questions given in the Question Booklet.
- 9. Negative marking will be adopted for evaluation i.e., 1/4th of the marks of the question will be deducted for each wrong answer. A wrong answer means incorrect answer or wrong filling of bubble.
- 10. For calculations, use of simple log tables is permitted. Borrowing of log tables and any other material is not allowed.
- 11. For rough work only the sheets marked "<u>Rough Work</u>" at the end of the Question Booklet be used.
- 12. The Answer Sheet is designed for **computer evaluation**. Therefore, if you do not follow the instructions given on the Answer Sheet, it may make evaluation by the computer difficult. Any resultant loss to the candidate on the above account, i.e., not following the instructions completely, shall be of the candidate only.
- 13. After the test, hand over the Question Booklet and the Answer Sheet to the Assistant Superintendent on duty.
- 14. In no case the Answer Sheet, the Question Booklet, or its part or any material copied/ noted from this Booklet is to be taken out of the examination hall. Any candidate found doing so would be expelled from the examination.
- 15. A candidate who creates disturbance of any kind or changes his/her seat or is found in possession of any paper possibly of any assistance or found giving or receiving assistance or found using any other unfair means during the examination will be expelled from the examination by the Centre Superintendent / Observer whose decision shall be final.
- 16. Telecommunication equipment such as pager, cellular phone, wireless, scanner, etc., is not permitted inside the examination hall. Use of calculators is not allowed.

M. Sc. (Hons. School/2 Year Course)-Chemistry/A

<u>3</u>

M. Sc. (Hons. School/2 Year Course)-Chemistry/OEC-22971-A

8. Free radical bromination of isopropyl benzene gives :

4

M. Sc. (Hons. School/2 Year Course)-Chemistry/OEC-22971-A

Get Information about high school and 10+2 schools in your city and state

14. The correct order of decreasing acidity following carboxylic acid is :

	I.	Вг	II.	F СООН
	III.	Br	IV.	
	(A)	I > III > II > IV	(B)	II > IV > I > III
	(C)	I > IV > II > III	(D)	III > IV > II > I
15.	Acet	ic anhydride can be prepared by reactior	n of :	
	(A)	Acetic acid with sodium acetate	(B)	Acetic acid with aluminum chloride
	(C)	Acetic acid with phosphorus pentaoxide	(D)	Acetic acid with ihionyl chloride
16.	Sepa	ration of primary, secondary and tertiar	y ami	ines can be achieved by :
	(A)	Hinsberg's reagent	(B)	Sanger's reagent
	(C)	Brady's reagent	(D)	Tollen's reagent
17.	Redu	action of benzonitrile (C_6H_5CN) with lithin	ım alı	uminium hydride gives :
	(A)	Aniline	(B)	Benzyl amine
	(C)	o-Toludine	(D)	Benzamide
18.	The	pH at which amino acid behaves as neutr	al mo	blecule is known as :
	(A)	Equivalent point	(B)	Isoelectric point
	(C)	Neutralization equivalent	(D)	Iodine number
19.	Whie	ch of the following carbohydrate is not a r	educ	ing sugar ?
	(A)	Glucose	(B)	Maltose
	(C)	Sucrose	(D)	Fructose
20.	. Which of the following atom do not exhibit nuclear magnetic resonance ?			
	(A)	N ¹⁴	(B)	C ¹³
	(C)	P ³¹	(D)	F ¹⁹
21.	The	region below 1500 cm ⁻¹ in infrared spect	roscoj	py is known as :
	(A)	Far infrared region	(B)	Near infrared region
	(C)	Finger print region	(D)	Microwave region
22.	The	acidity of methylene protons in ethyl ace	etoace	etate is due to :
	(A)	Inductive effect	(B)	Field effect
	(C)	Mesomeric effect	(D)	Resonance stabilisation

<u>5</u>

M. Sc. (Hons. School/2 Year Course)-Chemistry/OEC-22971-A

23. Pyridine is less basic as compared to triethyl amine because lone pair resides in :

(B)

(D) p-orbital

sp³ hybride orbital

- (A) sp hybride orbital
- (C) sp^2 hybride orbital
- 24. The product X in the following reaction is :

Ph CH, ZnCl₂ / 170° C Х Η (A) 2-Methyl indole 2-Phenyl indole **(B)** 1-Phenyl-2-methyl indole (C) (D) 1-methyl-2-phenyl indole 25. Reaction of methyl magnesium bromide (3 eq.) with diethyl carbonate followed by acidic hydrolysis gives : 2-Propanol (A) 2-Methyl-2-propanol (B) (C) (D) Propanal 1-Propanol 26. The structure of beryllium chloride in the solid state is : Bridged dimer Polymeric chain structure (A) **(B)** (C) Linear Tetrahedral (D)27. The element with atomic number 35 in the periodic table belongs to : (A) s-block (B) *p*-block (C) *d*-block (D) f-block **28.** The geometry of XeOF₂: (A) Pyramidal **(B)** Octahedral (C) T-shaped (D) Tetrahedral 29. Alkyl lithium reacts with carbon dioxide to give : Carboxylic acid **(B)** Alcohol (A) (C) Ketone (D) Esters 30. Which of the following ion has highest enthalpy of hydration? (A) Li+ (B) Na⁺ (C) Rb⁺ (D) Cs⁺ **31.** The bond order in superoxide $(O_2)^-$ ion is : 2 2.5 (A) (B) (C) 1.5 (D) 3

6

M. Sc. (Hons. School/2 Year Course)-Chemistry/OEC-22971-A

32.	The oxidation state of nitrogen in ammonium nitrate corresponds to :				
	(A)	+3	(B)	+5	
	(C)	+3 and +5	(D)	-3 and +5	
33.	In W	Vurtzite structure, Zn²⁺ ions occupy :			
	(A)	All tetrahedral sites	(B)	Half tetrahedral sites	
	(C)	All octahedral sites	(D)	Half octahedral sites	
34.	Thes	state of hybridisation in interhalogen ion	, ICl ₄	- is :	
	(A)	<i>sp</i> ³ hybridisation	(B)	$sp^{3}d$ hybridisation	
	(C)	sp^3d^2 hybridisation	(D)	$sp^{3}d^{3}$ hybridisation	
35.	In th	e first transition series, the highest oxida	ation	state is shown by :	
	(A)	Cr	(B)	Co	
	(C)	Cu	(D)	Mn	
36.	Ruth	enium and osmium in the periodic table		g to :	
	(A)	Cu	(B)	Mn	
	(C)		(D)		
37.		ch of the following has lowest oxidation s			
		$\operatorname{Fe}_{3}[\operatorname{Fe}(\operatorname{CN})_{6}]$		$Na[Co(CO)_4]$	
		Fe(CO) ₅		$[Co(en)_3]Cl_3$	
38.		coordination number of cerium in [Ce(No			
	(A)	4	(B)		
	(C)	8	(D)	10	
39.	Which of the following statements is not correct for actinides and lanthanides ?				
	(A) Oxidation state of $+3$ is predominant in both the cases				
	(B)	(B) Both show contraction in their ionic radii			
	(C)	(C) The elements of both the series are radioactive			
	(D) Both involve the filling of <i>f</i> -orbitals				
40.	Cu ⁺ o	lisproportionates into :			
	(A)	Cuonly	(B)	Cu^{2+} and Cu^{3+}	
	(C)	Cu ²⁺ and Cu	(D)	Cu and Cu [−]	
41.	Whie	ch of the following is the strongest acid ?			
	(A)	HClO ₄	(B)	HClO ₃	
	(C)	HClO ₂	(D)	HOCI	
42.	AgC	l is soluble in ammonium hydroxide due t	to the	formation of :	
	-	AgNH ₂		AgCl.NH ₃	
		$[Ag(NH_3)_2Cl]$		NH ₄ [AgCl ₂]	
M. S	c. (Hon	s. School/2 Year Course)-Chemistry/OEC-22971-A	7	4	

43.	The	highest crystal field splitting will be for t	he liga	and :
	(A)	$C_2 O_4^{2-}$	(B)	NO ₂ ⁻
	(C)	NH ₃	(D)	CN ⁻
44.	Hem	e is a porphyrin complex of :		
	(A)	Fe(II)	(B)	Fe(III)
	(C)	Mg(II)	(D)	Zn(II)
45.	Grou	and state term of d^{5} configuration is :		
	(A)	⁶ S	(B)	${}^{4}\mathrm{F}$
	(C)	² D	(D)	³ P
46.	Whi	ch of the following does not have bridging	g carb	oonyls ?
	(A)	$Fe_{3}(CO)_{12}$	(B)	$\operatorname{Fe}_2(\operatorname{CO})_9$
	(C)	$\operatorname{Co}_4(\operatorname{CO})_{12}$	(D)	Ru ₃ (CO) ₁₂
17.	Whi	ch of the following is not an organometall	ic con	$\operatorname{Ku}_{3}(\operatorname{CO})_{12}$ npound ? $\operatorname{Fe}(\operatorname{C}_{5}\operatorname{H}_{5})_{2}$ $\operatorname{Sn}(\operatorname{C}_{4}\operatorname{H}_{9})_{4}$ tate of silver chloride on addition of
	(A)	$Pb(C_2H_5)_4$	(B)	$\operatorname{Fe}(C_5H_5)_2$
	(C)	$Si(OC_2H_5)_4$	(D)	$Sn(C_4H_9)_4$
18.	Whi	ch of the given complex does not give p	ecipi	tate of silver chloride on addition of
	silve	r nitrate ?		
	(A)	CoCl ₃ .6NH ₃	(B)	CoCl ₃ .5NH ₃
	(C)	CoCl ₃ .4NH ₃	(D)	CoCl ₃ .3NH ₃
9.	Whi	ch of the following is not a hard acid ?		
	(A)	Na ⁺	(B)	Mg^{2+}
	(C)	Ti ⁴⁺	(D)	Hg^{2+}
50.	The	colour of copper sulphide is :		
	(A)	Red	(B)	Yellow
	(C)	Black	(D)	Blue
51.		it will be the energy (in eV) of an electron ite one dimensional box of width 1Å ?	in gr	ound state constrained to move in an
	(A)	38 eV	(B)	152 eV
	(C)	19 eV	(D)	342 eV
52.	The	Hook's law potential of an Simple Harmo	onic C	Oscillator is :
	(A)	A circle	(B)	Anellipse
	(C)	A parabola	(D)	A hyperbola
:2	. ,	equation for the Lambert's law is :		
55.		-		
55.	(A)	$\ln \left(I_0 / I \right) = -bx$	(B)	$\ln (I / I_0) = -bx$

M. Sc. (Hons. School/2 Year Course)-Chemistry/OEC-22971-A

<u>8</u>

54.	4. Which of the following molecule is IR-inactive but Raman-active ?						
0 10	(A)	Protein		HBr			
	(C)	H ₂ O	(D)				
55.		2		2			
	55. A compound of Xe and F is found to have 53.5% of Xe. What is the oxidation state of Xe in this compound ?						
	(A)	-4	(B)	0			
	(C)	+4	(D)	+6			
56.	Amo	ount of heat required to change 1g ice at	0°C to	o 1g steam at 100° C is :			
	(A)	616 cal	(B)	12 kcal			
	(C)	717 cal	(D)	919 cal			
57.	In th	e limit T \rightarrow 0, for a crystal					
	(A)	$S_T = C_p/2$	(B)	$S_{T} = C_{p}/3$			
		$S_T = C_p/4$	(D)	$S_T = C_p/3$ $S_T = C_p$			
58.		ulate the enthalpy of hydration of anhydro					
	copp	er sulphate (CuSO ₄ .5H ₂ O). Given that the	entha	lpies of solutions of anhydrous copper			
	sulp	hate and hydrated copper sulphate are –	66.5 a	nd +11.7 kJ/mol respectively.			
	(A)	–78.2 kJ/mol	(B)	–54.8 kJ/mol			
	(C)	+54.8 kJ/mol	(D)	+78.2 kJ/mol			
59.	The	electronic partition function of an atom	whose	e atomic state is ² D _{3/2} is :			
	(A)	3/2	(B)	3			
	(C)	4	(D)	2/3			
60.		distance travelled by an ion per second un	nder a	potential gradient of 1 volt per cm is			
	called :						
	(A)	Ionic gradient	(B)	Ionic mobility			
	(C)	Ionic potential		Ionic conductance			
61.	The	pH of a solution is enhanced from 2 to 3. T	The co	oncentration of \mathbf{H}^{+} in the new solution			
	(A)	is three times the original solution	(B)	is about 1.5 times the original solution			
	(C)	Increases 10 times	(D)	Decreases 10 times			
62.		standard reduction potentials in volts		0			
	-	ectively. Calculate E ^o in volts for a	cell	in which the overall reaction is			
		$2 \operatorname{Ag}^{+} \to \operatorname{Pb}^{2+} + 2 \operatorname{Ag} :$					
	(A)	0.93	(B)	0.67			
	(C)	1.73	(D)	1.47			
63.		ystal having unit cell dimensions a ≠ b ≠					
	(A)	Cubic	(B)	Tetragonal			
	(C)	Monoclinic	(D)	Orthorhombic			

<u>9</u>

M. Sc. (Hons. School/2 Year Course)-Chemistry/OEC-22971-A

64.	The edge length of face centered unit cubic cell is 508 pm. If the radius of the cation is 110 pm, radius of the anion is :				
	(A)	144 pm	(B)	288 pm	
	(C)	618 pm	(D)	398 pm	
65.		value of van der Waal's constant 'a' for l ºC and its critical pressure is 12.4 atm :	nydro	gen gas when critical temperature is	
	(A)	24.912 atm litre ² mol ^{-1}	(B)	21.439 atm litre ² mol ^{-1}	
	(C)	47.935 atm litre ² mol ^{-1}	(D)	$37.428 \text{ atm litre}^2 \text{ mol}^{-1}$	
66.	A ga	s will approach ideal behaviour at :			
	(A)	Low temp and low pressure	(B)	Low temp and high pressure	
	(C)	High temp and low pressure		High temp and high pressure	
67.	Whi	ch of the following pairs of solutions will	be iso	tonic at the same temperature ?	
	(A)	0.1 m glucose and 0.1 m KCl		$0.1 \text{ m glucose and } 0.1 \text{ m MgCl}_2$	
	(C)	$0.1 \text{ m K}_2 \text{SO}_4 \text{ and } 0.1 \text{ m KCl}$		$0.1 \text{ m Na}_2 \text{SO}_4 \text{ and } 0.1 \text{ m Ca}(\text{NO}_3)$	
68.	The	units in which surface tension is measure			
	(A)	Dyne cm	. ,	Dyne cm ⁻¹	
	(C)	Dyne ⁻¹ cm		Dyne ⁻¹ cm ⁻¹	
69.		half life period for catalytic decompositio hrs. The order of the reaction is :	n of A	\mathbf{B}_{3} at 50 mm is 4 hrs and at 100 mm it	
	(A)	Zero	(B)	1	
	(C)	2	(D)	3	
70.	70. The modified distribution law for the solute undergoing dissociation in one of the solvents is :				
		$K_{\rm D} = C_1 / \sqrt{C_2}$	(B)	$K_{\rm D} = C_1 / C_2 (1 - \alpha)$	
	(C)	$K_{\rm D} = C_1 / C_2 (\alpha - 1)$	(D)	$K_{\rm D} = C_1 / C_2$	
71.	71. The decomposition of $CaCO_3$ in a closed vessel is represented by the equation				
	$CaCO_{3}(s) \leftrightarrow CaO(s) + CO_{2}(g)$				
	The number of phases and components respectively are :				
	(A)	3 and 2	(B)	2 and 3	
	(A) (C)	3 and 2 2 and 2	(B) (D)	2 and 3 3 and 3	
72.	(C) The		(D)	3 and 3	
72.	(C) The	2 and 2 activation energy of a reaction can be d	(D)	3 and 3	

<u>10</u>

M. Sc. (Hons. School/2 Year Course)-Chemistry/OEC-22971-A

Get Information about high school and 10+2 schools in your city and state

73. The function of alum used for the purification of water is to :

- (A) Coagulate the sol particles
- (C) Emulsify the sol particles

74. Freundlich isotherms is not applicable at :

- (A) Room temperature
- (C) 273 K (D) High pressure

75. The osmotic pressure in millimetres of mercury at 15°C of a solution of naphthalene $(C_{10}H_s)$ in benzene containing 14g of naphthalene per litre of solution :

- (A) 2.586 mm **(B)**
- (C) 262 mm 199037 mm (D)

(B) Low pressure

Disperse the sol particles

Absorb the sol particles

1965 mm

(B)

(D)

<u>11</u>

ROUGH WORK

How Crame

M. Sc. (Hons. School/2 Year Course)-Chemistry/OEC-22971-A

<u>12</u>

211