Sample Question Paper – I

9035

Course Name Course code Semester Subject Duration

:- CO/CM/IF/CD

:- Computer Group

- :- Third
- :- Applied Mathematics
- :- 3 hours

Instructions:

- All Questions are compulsory
- Figures to the right indicate full marks
- Assume suitable data if necessary

Q1. Attempt Any Eight

a) Evaluate
$$\int \frac{1}{\sqrt{x} - \sqrt{x-1}} dx$$

- b) Evaluate $\int e^{\sin x} \cos x dx$
- c) Evaluate $\int xe^x dx$

d) Evaluate
$$\int \frac{2x+3}{x^2+3x+1} dx$$

e) Evaluate
$$\int_{0} \sin^2 x dx$$

- f) Find the order and degree of differential equation $k \frac{d2y}{dx^2} = [1 + \frac{dy}{dx}]^{3/2}.$
- g) Prove that $\mathbf{E}\nabla = \nabla E = \Delta$
- h) Show that the second differences of the polynomial $y=x^2$ when x=1,3,5,7,9, are constant.
- i) By using Simpson's 1/3rd Rule Evaluate

 $\int f(x)dx$ using following table.

1					
x	1	2	3	4	5
f(x)	10	50	70	80	100

j) If X={1,2,3,4,5,6,...,15} A= {5,6,7,8,9,10,11} B= {9,10,11,12,13,14} Find A' - B'

Q2. Attempt Any Three

a) Verify that y=logx is a solution of differential equation

Marks-12

Marks-16

Marks: 80

$$x\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$

) Solve $\frac{dy}{dx} = \cos(x + y)$

b) Solve
$$\frac{dy}{dx} = \cos(x + y)$$

c) Solve $(2x+3\cos y) dx + (2y-3x\sin y) dy=0$

d) Solve
$$x \log x \frac{dy}{dx} + y = 2\log x$$

Q3. Attempt any Three

a) Given

UIVUI							
	Х	3	7	9	10		
	у	168	120	72	63		
	-				.		

Estimate y when x=6 Using Lagrange's interpolation formula

b) Using Newton's forward formula for interpolation find f(1.5) from the Following data

Х	1	2	3	4	5
f(x)	2.38	3.65	5.85	9.95	14.85

c) From the following table find the number of students who obtained marks more than 65[Use Newton's backward interpolation formula]

Marks obtained	30-40	40-50	50-60	60-70	70-80
No. of Students	30	41	52	36	31

d) The current I flowing in the circuit containing resistance R and inductance L in series with voltage source E at time t is given by $L\frac{dI}{dt} + RI = E$. Show that

$$\mathbf{I} = \frac{E}{R} (1 - e^{-Rt/L})$$

Q4. Attempt any four

- a) Evaluate $\int x \tan^{-1} x dx$
- b) Evaluate $\int \frac{\cos x}{(1+\sin x)(2+\sin x)} dx$ c) Evaluate $\int_{0}^{\pi/2} \frac{\sin x}{(1+\cos x)^3} dx$ $\frac{4}{2} = \sqrt{x+5}$

d) Evaluate
$$\int_{0}^{1} \frac{\sqrt{x+5}}{\sqrt{x+5} + \sqrt{9-x}} dx$$

- ^{e)} Using integration find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- f) Find the area between parabola $y=x^2$ and the line y=x

Marks-12

Marks-16

Q5. Attempt Any Three

a) Find y'(0) from the following data

						•
Х	0	1	2	3	4	5
у	4	8	15	7	6	2

b) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by Trapezoidal Rule by taking h=4 and hence obtain

approximate value of π

c) A curve is drawn to pass through the points given by the following table $\boxed{x \quad 1 \quad 1.5 \quad 2 \quad 2.5 \quad 3 \quad 3.5}$

Λ	1	1.5	4	2.5	5	5.5	
у	2	2.4	2.7	2.8	3	2.6	
			· · · ·				۰.

Using Simpson's $1/3^{rd}$ rule estimate the area bounded by the curve y=f(x), the x-axis and x=1

d) By Using Range-Kutta method fourth order solve the differential equation $\frac{dy}{dx} = \frac{y}{x}, y(1) = 1 \text{ obtain } y \text{ when } x = 1.1 \text{ (Take h=0.1)}$

Q6. Attempt any Three

Marks-12

Marks-12

- ^{a)} Using second order Runge-Kutta method solve differential equation y' = -y, y(0)=1 for x₁=0.2 and x₂=0.4
- b) Using Runge-Kutta method of Fourth order to find an approximate value of y

when x=0.02 given that $\frac{dy}{dx} = x^2 + y^2$ with y(0)=1

- c) If A={X/x²-11x+28=0} B={x/x²+8x-48=0} and C={x/x²+12x+35=0} And the universal set X={-12,-10,-7,-6,-5,4,5,7} Verify that
 - i) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - ii) $(A \cup C)' = A' \cap C'$
- d) Find how many integers from 1 to 300 are not divisible by 3 nor by 5.