ROLL NO.:
SECTION: M2116

TEST-2
FINITE ELEMENT METHODS (MEC912)

TIME: 45mins
FULL MARKS-20
(1) For the axisymmetric triangular element shown in figure below, determine the element strain $\left[\varepsilon_{r} \varepsilon_{z} \gamma_{\mathrm{rz}} \varepsilon_{\theta}\right]^{\top}$ and element stress $\left[\sigma_{r} \sigma_{z} \tau_{r z} \sigma_{\theta}\right]^{\top}$. Take $E=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $v=0.25$. The co - ordinates are in mm . The nodal displacements are $u_{1}=0.05 \mathrm{~mm}, w_{1}=0.03 \mathrm{~mm}, u_{2}=0.02 \mathrm{~mm}, w_{2}=0.02 \mathrm{~mm}, u_{3}=0.0 \mathrm{~mm}, w_{3}=0.0 \mathrm{~mm}$.

The strain-displacement matrix is given by:	$\mathbf{B}=\left[\begin{array}{cccccc}\frac{z_{23}}{\operatorname{det} \mathbf{J}} & 0 & \frac{z_{31}}{\operatorname{det} \mathbf{J}} & 0 & \frac{z_{12}}{\operatorname{det} \mathbf{J}} & 0 \\ 0 & \frac{r_{32}}{\operatorname{det} \mathbf{J}} & 0 & \frac{r_{13}}{\operatorname{det} \mathbf{J}} & 0 & \frac{r_{21}}{\operatorname{det} \mathbf{J}} \\ \frac{r_{32}}{\operatorname{det} \mathbf{J}} & \frac{z_{23}}{\operatorname{det} \mathbf{J}} & \frac{r_{13}}{\operatorname{det} \mathbf{J}} & \frac{z_{31}}{\operatorname{det} \mathbf{J}} & \frac{r_{21}}{\operatorname{det} \mathbf{J}} \frac{z_{12}}{\operatorname{det} \mathbf{J}} \\ \frac{N_{1}}{r} & 0 & \frac{N_{2}}{r} & 0 & \frac{N_{3}}{r} & 0\end{array}\right] \quad$ and the stress-strain matrix is given by:

(2) A two dimensional propped beam is shown in figure below:

It is divided into two CST elements. Determine the nodal displacement and element stresses using plane stress conditions. Body force is neglected in comparison with the external forces.
Take, Thickness (t) $=10 \mathrm{~mm}$,
Young's modulus (E) $=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, Poisson's ratio (v) $=0.25$.
(3) A unidirectionally-reinforced glass-epoxy lamina shown below has the following properties: $E_{1}=53 \mathrm{GPa}, E_{2}=18 \mathrm{GPa}, v_{12}=0.25, G_{12}=9 \mathrm{GPa}$. The load P is applied in the 1-direction.
Note: This lamina is orthotropic.

0.1 mm before the load is applied

Determine strains ε_{1} and ε_{2} under the force P.
(4) Wood is an orthotropic material. Comment

