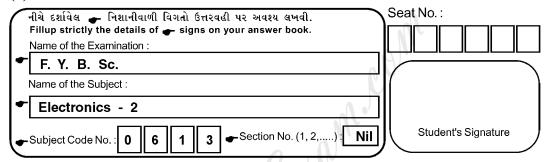


SB-0613

First Year B. Sc. Examination

March/April - 2011


Electronics: Paper - II

(Network Lines & Field)

Time: 3 Hours] [Total Marks: 70

Instructions:

(1)

- (2) Figures on the **right** indicate marks.
- (3) All symbols and abbreviations have their usual meaning.
- (4) Non-programmable calculators is allowed.
- (5) Q. 1 is compulsory.
- (6) Assume data if **necessary**.
- 1 Answer in short:

 $7 \times 2 = 14$

- (a) What is a Fourier Series?
- (b) Explain following term and give their units. Bandwidth, Q-factoOr, Resonance frequency.
- (c) Give units of Resistance, Reactance, Impedance and Admittance
- (d) What is Time constant? Give time constant of R-L circuit.
- (e) What is Power factor?
- (f) Define cut-off frequency in filter.
- (g) In a circuit using three impedances how many circuit arrangement is possible.
- 2 (a) State and prove Thevenine theorem

8

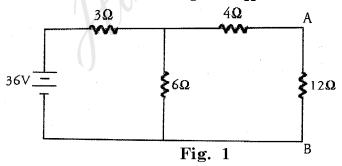
(b) State and explain Ohm's Law, Kirchoff's voltage Law and Kirchoff's current Law.

OR

SB-0613] 1 [Contd...

- 2 (a) Deduce Laplace transform of nth order integral.Deduce. 8
 - (b) Find the Laplace transform of:

6


- (1) $F(t) = Exp(\alpha t)$
- (2) $F(t) = \cos(\omega t)$.
- 3 (a) Reduction of complicated network using $$\rm I4$$ $\rm Z_{\rm _{loc,}}\,\rm Z_{\rm _{lsc,}}\,\rm Z_{\rm _{2sc}},\,\rm Z_{\rm _{2sc}}.$ Derive equation for star and delta network.

OR

- 3 (a) State and prove maximum power transfer theorem using suitable example. 7
 - (b) What is an ideal current source? State and prove Norton's Theorem.
- 4 (a) Find the Mutual inductance (M) and co-efficient of coupling (k) of two magnetically coupled coils. If the coil has self inductance of 250 μH each. If series aiding inductance (La) of 550 μH and series opposing inductance (Lo) of 450 μH .
 - (b) In a parallel resonance circuit $R=100~\Omega$, L=2.5~H~4 and C=0.1 micro farad, then calculate impedance and anti-resonance of the circuit.

OR

- 4 (a) An R-L-C circuit containing capacitor of reactance 10 $_{\Omega}$ a coil having a resistance 60 $_{\Omega}$ and inductive reactance of 180 $_{\Omega}$. The combination is connected across a supply of 200V, 50 Hz. Compute (1) Current, (2) Power factor and (3) Power taken by the circuit.
 - (b) In the below given circuit using Thevenine's theorem 4 find the current through 12 Ω .

5 Write short note on any **two**:

7×2=14

- (b) Types of Filter
- (c) Resonance and Anti-resonance

Evalution of Fourier constant

(d) Reciprocity Theorem.

SB-0613]

(a)

2

[300