

SB-1171

Fourth Year B. Pharm. Examination March/April - 2011

PH-401: Pharmaceutics - V

(Biopharmaceutics, Pharmacokinetic & Dosage Form Design)

Time: 3 Hours [Total Marks: 70

Instructions:

નીચે દર્શાવેલ 👉 નિશાનીવાળી વિગતો ઉત્તરવહી પર અવશ્ય લખવી. Fillup strictly the details of 👉 signs on your answer book.	Seat No. :
Name of the Examination :	
Fourth Year B. Pharm.	
Name of the Subject :	l (
◆ Pharmaceutics - 5	
Subject Code No. : 1 7 1 Section No. (1, 2,) : 1&2	Student's Signature

- (2) There are two sections each of 35 marks.
- (3) Each section having three questions.
- (4) Answer and submit both the sections separately.

SECTION - I

1 Attempt any **five** from the following:

- 10
- (a) Write the characteristic of passive diffusion.
- (b) Why is the placental barrier not effective as BBB?
- (c) Why HSA considered a versatile protein for drug distribution?
- (d) Phase II reactions are called as true detoxification reaction. Explain.
- (e) What is sink condition and how is it maintained and why it is needed?
- (f) List the various pharmaceutical and pharmacokinetic application of prodrug.
- (g) What factors determine the pulmonary excretion of drug?

SB-1171] 1 [Contd...

16

- (a) Explain BBB (Blood brain barrier)
- (b) Discuss drug metabolizing enzyme.
- (c) Following data is obtained for 4 formulation of a drug in patients of average weight 50 kg.

Drug Product	Dose (mg/kg)	AUC (mcg.hr/l)
I.V. solution	1.2	450
Oral solution	4.0	822
Oral capsule	4.0	736
Oral S.R tablet	8.0	1040

- (i) What is the absolute bioavailability from capsule and S.R. tablet?
- (ii) What is the relative bioavailability of capsule and S.R. tablet against oral solution?
- (iii) Which solid formulation shows better bioavailability?
- (iv) Are the two solid formulation shows bioequivalent?
- (d) A new antibiotic drug was given in a single intravenous bolus of 4 mg/kg to five healthy male adults ranging in age from 23 to 38 years (average weight 75 kg). The pharmacokinetics of the plasma drug concentration-time curve for this drug fits a one-compartment model. The equation of the curve that best fits the data is

$$C_p = 78 e^{-0.46t}$$

Determine the following (Asuming units of $\;\mu$ g/ml for $C_{_{\rm p}}$ and hr for t)

- (i) What is the $t_{1/2}$?
- (ii) What is the V_D ?
- (iii) What is the plasma level of the drug after 4 hours?
- (iv) How much drug is left in the body after 4 hours?
- (e) Explain cross over study and Balance incomplete block design.
- (f) What are the two methods of calculating $K_{\rm E}$ from urinary excretion data? Compare their merits and demerits.

SB-1171] 2 [Contd...

- 3 Attempt any **three** from the following:
 - (a) Define dose ratio. Why is it always smaller for extra vascularly administered drug in comparison to intravenously administered drug?
 - (b) Discuss diffusion controlled release system.
 - (c) Define preformulation and write about solubility studies.
 - (d) Write the limitation and significance of P^H partition hypothesis.
 - (e) Estimate the creatinine clearnace of a 30 year old, 70 kg man with serum creatinine value 2.0 mg%. What is renal function value of such a patient?

SECTION - II

4 Attempt any eleven from the following:

11

9

- (a) Define extraction ratio.
- (b) Enlist all official apparatus of dissolution.
- (c) Why buffered tablet are more soluble than salt form of aspirin?
- (d) Name the three approaches by which a polar drug can be targeted to brain.
- (e) Define intrinsic solubility.
- (f) Define fluctuation and accumulation index.
- (g) Delayed intestinal transit time is some time desirable. Why?
- (h) Define prospective validation.
- (i) What is stress testing?
- (j) Comment Micronization of hydrophobic drug is not advisable.
- (k) Define MRT.
- (l) Why are reservoir devices susceptible to dose dumping?
- (m) What is dose dependent kinetics and write the name of tests by which it can detect?
- (n) Comment Can a drug have two or more than V_{d} ?
- (o) Define IVIVC.

SB-1171] 3 [Contd...

- 5 Attempt any **three** from the following:
 - (a) Write the name of non renal methods of drug excretions and discuss in detail biliary excretion.
 - (b) Discuss in detail process variable of tables.
 - (c) Write in brief the effects of urine P^H, drug PKa and lipid solubility on re-absorption of drug.
 - (d) Discuss BCS (Biopharmaceutical Classification System).
 - (e) How a dosage regimen will design. Explain every step in detail.
- **6** Attempt anay two from the following:

12

12

(a) Calculate the absorption rate constant using wagnernelson method of following given data. Ke = $.086 \text{ hr}^{-1}$.

Time (hr)	0	1	2	3	5	7	9	12	18	24	36	48
Drug								•/				
Concentration	0	1.88	3.05	3.74	4.21	4.08	3.70	3.02	1.86	1.12	0.40	0.14
$(\mu \; \mathrm{g/ml})$							\mathcal{N}					

- (b) Explain all methods to increase bioavailability in detail.
- (c) Atenolol is to be administered orally to a 50 kg patient suffering from hypertension. The typical parmeter of the drug on population basis are:

F	$ m V_d$	$igcup \operatorname{CL}_{\scriptscriptstyle{\mathrm{T}}}$	Therapeutics range
0.4	$1.23\mathrm{l/kg}$	118.4 ml/min	0.2 - $1.3 \mathrm{mcg/ml}$

Design a dosage regimen to attain and maintain the plasma concentration within the therapeutics range. Assume rapid absorption.

SB-1171] 4 [600]