

SB-3808

M. Sc. (I.T.) (Sem. II) Examination March/April - 2011

Paper - 201: Mathematics - II

Time: 3 Hours] [Total Marks: 70

Instructions:

નીચે દર્શાવેલ 🚁 નિશાનીવાળી વિગતો ઉત્તરવહી પર અવશ્ય લખવી. Fillup strictly the details of 🚁 signs on your answer book.	Seat No.:
Name of the Examination:	
★ M. SC. (I.T.) (SEM. 2)	
Name of the Subject :	(A)
PAPER - 201 : MATHEMATICS - 2	
Subject Code No.: 3 8 0 8 Section No. (1, 2,) NIL	Student's Signature

- (2) Attempt all questions.
- (3) Use of non-programmable calculator is allowed.
- (4) Figures to the right indicate full marks.
- (5) Follow usual notations.
- 1 (a) Determine the maximum number of edges in a simple graph with n vertices and k components.

OR

5

5

9

- (a) Prove that the sum of degrees of vertices in a finite graph is twice the number of edges in it. Hence show that the number of vertices of odd degree in the graph is always even.
- (b) Answer any three of the following:
 - (i) In a simple graph with n vertices, prove that the maximum degree of any vertex is (n-1)
 - (ii) Show that an infinite graph with a finite number of vertices must have at least one pair of vertices joined by an infinite number of parallel edges.
 - (iii) Define the following terms and give a suitable illustration in each case :
 - (a) Isomorphic graphs
 - (b) Ring sum of two graphs
 - (c) Regular graph.

SB-3808] 1 [Contd...

- (iv) Give a brief account of a history of graph theory.
- (v) Find the number of vertices in a graph with 16 edges if each vertex is of degree 4.
- 2 (a) Let G be a complete graph with n vertices (where n is an odd number ≥ 3). Determine the number of edge disjoint Hamiltonian circuits in G.

OR

- (a) In a complete graph with 2k odd vertices, prove that there exists k edge disjoint sub-graphs such that they together contain all edges of G and that each is a unicursal graph.
- (b) Answer any three of the following:
 - (i) If a connected graph G is an Euler graph then prove that all vertices of G are of even degree.
 - (ii) Describe briefly the travelling salesman problem. Using graph theory discuss the solution of it.
 - (iii) Define the following terms and give a suitable illustration in each case.
 - (a) Walk in graph
 - (b) Unicursal graph
 - (c) Fusion of two graphs
 - (iv) Let G be a connected graph with at least two vertices. If the number of edges in G is less than the number of vertices then prove that G has a vertex of degree one.
 - (v) Prove that a connected graph G remains connected after removing an edge e from G if and only if e is in some circuit in G.
- 3 (a) Define:

4

9

- (i) Vertex connectivity
- (ii) Separable graph
- (iii) Spanning Tree
- (iv) Path Matrix of a graph

OR

(a) Define the incidence matrix of a graph with illustration 4 and state properties of it.

SB-3808] 2 [Contd...

(b) Using the Kruskal's algorithm OR the Prim's algorithm, 5 find a minimal spanning tree for the connected weighted graph G = (V, E) given below.

(c) Apply the BFS algorithm to find the shortest path from the vertex s to the vertex t in the following graph.

4 (a) Prove that every tree has either one or two centers.

Determine the radius and the diameter of a regular graph with 6 vertices.

OR

- (a) Define a connected graph. Prove that a graph G with 5 n vertices, (n-1) edges and no circuits is connected.
- (b) Answer any three of the following:
 - (i) Prove that a tree with n vertices has (n−1) edges.(ii) In a binary tree with n vertices prove that (i) max

9

- In a plinary tree with it vertices prove that (i) max $I_{max} = (n-1)/2$. (ii) The number of pendant vertices is (n+1)/2.
- (iii) Define the following terms with illustrations:
 - (a) Level of a vertex in a Binary tree
 - (b) Minimally connected graph
 - (c) Eccentricity of a vertex.
- (iv) Find the rank and nullity of a complete graph with n vertices.
- (v) Prove that a connected graph with n vertices and (n−1) edges is a tree.

SB-3808] 3 [Contd...

5 (a) State and prove Euler's formula.

5

OR

- (a) Show that a complete graph with five vertices is non-planar. 5
- (b) Answer any three of the following:

9

- (i) Prove that a graph can be embedded in the surface of the sphere if and only if it can be embedded in a plane.
- (ii) If the intersection of two paths in a graph is disconnected then prove that their union has at least one circuit.
- (iii) Using Euler's formula, show that the Petersen's Graph is non-planar.
- (iv) Let G be a connected planar graph with 6 vertices each of degree 4. Find the number of regions in G.
- (v) List all possible cut-sets consisting of 3 edges in the following graph. Justify your answer.

SB-3808] 4 [300]