

SC-3801

M. Sc. (I.T.) (Sem. I) Examination April / May - 2011 101 - Mathematics - I

Time: 3 Hours [Total Marks: 70

_		_		
l n	stru	ati.	OB	
	>1.1 II			

નીચે દર્શાવેલ 👉 નિશાનીવાળી વિગતો ઉત્તરવહી પર અવશ્ય લખવી. Fillup strictly the details of 👉 signs on your answer book.	Seat No. :
Name of the Examination :	
◆ M. Sc. (I.T.) (SEM. 1)	
Name of the Subject :	A)"
◆ 101 - MATHEMATICS - 1	V
Subject Code No.: 3 8 0 1 - Section No. (1, 2,) : NIL	Student's Signature

- (2) Attempt all questions.
- (3) Figures to the right indicate full marks.
- (4) Follow usual notations.
- (5) Use of non-programmable calculator is allowed.
- 1.(a) Define the converse relation. Let R be a relation on A. Let R^{-1} be the converse relation of R. Prove that the range of R = 1 the domain of R^{-1} .
 - (a) Define: An equivalence class. Prove that any two equivalence classes are either identical or disjoint.
 - (b) Answer any three of the following.
 - (i) Let A = {1,2,3,4,5}. Let D means divides be a relation on A. Find D and show that it is transitive.

(9)

- (ii) Let I be the set of positive integers. Let \equiv_m be the congruence modulo m relation on I. Show that it is symmetric and transitive.
- (iii) Let P(A) be the power set of A. Let \subseteq (inclusion) be a relation on P(A). Show that it is transitive but not symmetric.
- (iv) Show that the union of two equivalence relations is not an equivalence relation.
- (v) Let R be the set of real numbers. Define a binary operation * on R as a*b=a+b+10. Find the value of (25*15)*12.
- (c) Define a function. Let $f: A \to B$ be a function. If $X, Y \subseteq A$ then prove that $f(X \cup Y) = f(X) \cup f(Y)$.

OR

(c) Define the inverse of a function. Prove that the inverse of a one-to-one and onto function is also one-to-one and onto.

SC-3801] 1 [Contd...

2.(a) Answer any two of the following.

(6)

(9)

- (i) Let f, g: R \rightarrow R be two functions. Let f(x) = x+3 and (gof)(x) = 3x—5. Find the formula for the function g.
- (ii) Let A = $\{1, 2, 3, 4, 5\}$. Let f, g, h : A \rightarrow A be functions defined by f = $\{(1, 2), (2,3), (3, 2), (4, 5), (5, 1)\}$; g = $\{(1, 3), (2, 2), (3, 1), (4, 1), (5, 4)\}$ and h = $\{(1, 2), (2, 4), (3, 3), (4, 5), (5, 1)\}$. (i) Determine which of the functions f, g, h are onto. (ii) Find fo(hog).
- (iii) Let $f: R \to R$ be a function defined as f(x) = (3x + 4). Prove that f is one—to—one and onto and hence find the inverse of f.
- (iv) Consider the real valued functions $f(x) = 3x^2 + 4x 5$ and g(x) = (5x-9). Find $(f \circ g)(x)$ and $(g \circ f)(5)$.
- (b) Define any three of the following giving one illustration to each.
 (i) An upper triangular matrix. (ii) Transpose of a matrix. (iii) Non-Singular matrix. (iv) symmetric matrix.(v) Skew-Hermitian matrix.
- (c) Answer any three of the following.
- (i) In the usual notations prove that $(\aleph_{A \cup B}) = \text{Max.}(\chi_{A}, \chi_{B})$.
- (ii) If $A = \begin{bmatrix} -2 & 4 & 5 \\ -3 & 1 & 0 \\ 2 & 6 & 7 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 & -2 \\ 3 & -2 & 1 \\ 5 & 4 & -1 \end{bmatrix}$ then find
 - (i) a matrix C such that 12A + 3C = 6B and (ii) a matrix BA.
- Obtain the adjA of a matrix A = $\begin{bmatrix} 3 & 0 & 1 \\ 2 & -4 & 6 \\ 4 & -1 & 5 \end{bmatrix}$ and calculate A(adjA).
- (iv) Find the inverse of the following matrix A using elementary row transformations.

$$A = \begin{bmatrix} 1 & 2 & -2 \\ -3 & 6 & 2 \\ 4 & 5 & 2 \end{bmatrix}.$$

- (v) Show that the every square matrix can be expressed as the sum of a symmetric matrix and a skew-symmetric matrix.
- 3.(a) State different measures of central tendency. Which measure will you (4) consider ideal. Why?

OR

- (a) Explain Dispersion. Discuss the merits and demerits of a variance as a measure of dispersion.
- (b) Answer any tw0 of the following.

(10)

(i) Find mean, median, mode and P₆₀ for the following data.

	1100110111					•
Age (in	30-34	35-39	40-44	45-49	50-54	55-50
vears)				13 43	30-34	33-39
years)						
No. of	4	6	12	18	14	0
				10	14	0
persons.					1	1

(ii) Calculate the harmonic mean, Q₃ and D₆ for the following data

Class:	0-10	10-20		30-40	40-50	50-60
Frequency	10	16	40	20	10	4
:			2			

SC-3801]

 $\mathbf{2}$

[Contd...

(iii) Find the coefficient of variance for the following data.

Wages:	>180	>190	>200	>210	>220	>230	>240
No. of	40	36	28	13	4	1	0
workers:							

(where > means greater than)

(c) Define: (i) Random experiment. (ii) Probability function. State and prove addition theorem on probability. (4)

ΛR

- (c) Define: (i) Sample space. (ii) Conditional probability. State and prove multiplication theorem on probability.
- 4.(a) Answer any two of the following.

(6)

- (i) A box I contains 16 non-defective and 4 defective electric bulbs and box II contains 12 non-defective and 4 defective bulbs. If integer 1 or 2 appears on the face of the die, box I is selected and a bulb is drawn at random from it. If integer other than 1 and 2 appears on the die, box II is selected and a bulb is drawn from it. A bulb is drawn at random and it was found defective. What is the probability that it was selected from the box II?
- (ii) A card is selected from a pack of well shuffled 52 cards. Let A be the event that the selected card is of ace and B is the event that the card is of heart. Find P(A/B).
- (iii) If A and B are independent events then prove that A^- and B are also independent.
- (b) State the probability function of a binomial distribution with parameters n and p. Show that its mean is np and variance is npq, where q=1-p.

OR

- (b) State the probability function of a Poisson distribution with parameter m. Show that its variance is m.
- (c) Answer any two of the following.

(6)

- (i) The mean and standard deviation of a random variable X are 10 and 5 respectively. Find $E(4 \times 4.5)$ and $V(3 \times 4.5)$
- (ii) A multiple choice test consists of 8 questions with 3 answers to each question (of which only one is correct). A student answers each question by tossing a die and checking the first answer if he gets 1 or 2; the second answer if he gets 3 or 4 and third answer if he gets 5 or 6. To get a distinction, the student must secure at least 75% correct answer. If there is no negative marking, what is the probability that the student secures a distinction?
- (iii) Between 10 and 11 a.m. the average number of phone calls per minute coming in to the switch board of a company is 2.5. Using Poisson distribution, find the probability that during one particular minute there will be (i) no phone call at all. (ii) exactly 3 calls.

SC-3801] 3 [100]