I B.Tech Supplimentary Examinations, Aug/Sep 2008 ENGINEERING DRAWING

 (Common to Bio-Medical Engineering, Information Technology, Electronics

 (Common to Bio-Medical Engineering, Information Technology, Electronics
 \& Telematics and Instrumentation \& Control Engineering)
 Time: 3 hours
 Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. A fixed point F is 7.5 cm from a fixed straight line. Draw the locus of a point P moving in such a way that its distance from the fixed straight line is $2 / 3$ times its distance from F. Plot at least 9 points. Name the curves. Also draw a normal and a tangent to the curve at a point on it 6 cm from F .
2. Construct a hypocycloid, rolling circle 50 mm diameter and directing circle 175 mm diameter. Draw a tangent to it at a point 50 mm from the center of the directing circle.
3. Draw the projections of the following points on the same ground line, keeping the Projectors 20 mm apart.
(a) Point C, in the V.P. and 40 mm above the H.P.
(b) Point D, 25 mm below the H.P. and 25 mm behind the V.P.
(c) Point E, 15 mm above the H.P. and 50 mm behind the V.P.
(d) Point F, 40 mm below the H.P. and 25 mm infront of the V.P.
4. (a) A line GH 45 mm long is in H.P. and inclined to V.P. The end G is 15 mm in front of V.P. the length of the front view is 35 mm . Draw the projections of the line. Determine its inclination with V.P.
(b) A line AB is 30 mm long and inclined at 30° to H.P. and parallel to V.P. The end A of the line is 15 mm above H.P. and 20 mm in front of V.P. Draw the projections of the line. $[8+8]$
5. Draw the projections of a circle of 60 mm diameter, resting on V.P. on a point on the circumference. The plane is inclined at 45^{0} to V.P. and perpendicular to H.P. The centre of the plane is 40 mm above H.P.
6. A pentagonal pyramid, base 25 mm side and axis 50 mm long has one of its triangular faces in the V.P. and the edge of the base contained by that face makes an angle of 30° with the H.P. Draw its projections.
7. Draw the isometric view of a cone, base 40 mm diameter and axis 55 mm long
(a) when its axis is vertical and
(b) when its axis is horizontal.
8. Draw the front view, top view and left side views of the Gib-Head key. Shown in figure 8. All dimensions are in mm .

Figure 8

I B.Tech Supplimentary Examinations, Aug/Sep 2008 ENGINEERING DRAWING

 (Common to Bio-Medical Engineering, Information Technology, Electronics

 (Common to Bio-Medical Engineering, Information Technology, Electronics
 \& Telematics and Instrumentation \& Control Engineering)
 Time: 3 hours
 Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. Construct a parabola when the distance between focus and the directrix is 40 mm . Draw tangent and normal at any point P on the curve.
2. A circle of 50 mm diameter rolls along a straight line without slipping. Draw the curve traced out by a point P on the circumference, for one complete revolution of the circle. Name the curve. Draw a tangent to the curve at a point on it 40 mm from the line.
3. Draw the projections of the following points on the same ground line, keeping the Projectors 20 mm apart.
(a) Point C, in the V.P. and 40 mm above the H.P.
(b) Point D, 25 mm below the H.P. and 25 mm behind the V.P.
(c) Point E, 15 mm above the H.P. and 50 mm behind the V.P.
(d) Point F, 40 mm below the H.P. and 25 mm infront of the V.P.
4. (a) A line EF 40 mm long is in the V.P. and inclined to H.P. The top view measures 30 mm . The end E is 10 mm above H.P. Draw the projections of the line. Determine its inclination with H.P.
(b) A line measuring 80 mm long has one of its ends 60 mm above H.P. and 20 mm in front of V.P. The other end is 15 mm above H.P. and in front of V.P. The front view of the line is 60 mm long. Draw the top view. [8+8]
5. A regular pentagon of length of 30 mm side, has one of its corners on V.P. and its surface is inclined at 60° to V.P. The edge, opposite to the corner on V.P, makes an angle of 45° with H.P. Draw the projection of the plane.
6. (a) Draw the projections of a pentagonal pyramid, base 30 mm edge and axis 50 mm long, having its base on the H.P. and an edge of the base parallel to the V.P. Also draw its side view.
(b) Draw the projections of a hexagonal pyramid, base 30 mm side and axis 60 mm long, having its base on the H.P. and one of the edges of the base inclined at 45^{0} to the V.P.
(c) A square pyramid, base 40 mm side and axis 65 mm , long has its base in the V.P. One edge of the base is inclined at 30° to the H.P. and a corner contained by that edge is on the H.P. Draw its Projections.
$[4+8+4]$
7. Draw the isometric view of the ribbed angle plate, shown in figure 7. All dimensions are in mm .

Figure 7
8. Draw the elevation, plan and left and right side views of the bracket shown in the figure 8. (All dimensions are in mm).

Figure 8

I B.Tech Supplimentary Examinations, Aug/Sep 2008 ENGINEERING DRAWING

 (Common to Bio-Medical Engineering, Information Technology, Electronics

 (Common to Bio-Medical Engineering, Information Technology, Electronics \& Telematics and Instrumentation \& Control Engineering)

 \& Telematics and Instrumentation \& Control Engineering)}

Answer any FIVE Questions All Questions carry equal marks

1. (a) Two points A and B are 100 mm apart. A point C is 75 mm from A and 60 mm from B. Draw an ellipse passing through A, B and C.
(b) A point P is 30 mm and 50 mm respectively from two straight lines which are at right angles to each other. Draw a rectangular hyperbola from P within 10 mm distance from each line.
2. Draw a hypo cycloid of a circle of 30 mm diameter which rolls inside another circle of 160 mm diameter, for one revolution counter clock wise. Draw a tangent and a normal to it at a point 60 mm from the center of the directing circle.
3. Draw the projections of the following points on the same ground line, keeping the Projectors 20 mm apart.
(a) Point C, in the V.P. and 40 mm above the H.P.
(b) Point D, 25 mm below the H.P. and 25 mm behind the V.P.
(c) Point E, 15 mm above the H.P. and 50 mm behind the V.P.
(d) Point F, 40 mm below the H.P. and 25 mm infront of the V.P.
4. (a) A 100 mm long line is parallel to and 40 mm above the H.P. Its two ends are 25 mm and 50 mm in front of the V.P. respectively. Draw its projections and find its inclination with the V.P.
(b) A line $\mathrm{AB}, 50 \mathrm{~mm}$ long, has its end A in both the H.P. and the V.P. It is inclined at 30° to the H.P and at 45° to the V.P. Draw its projections. [8+8]
5. A square ABCD of 50 mm side has its corner A in the H.P, its diagonal AC inclined at 30° to the H.P. and the diagonal BD inclined at 45° to the V.P. and parallel to the H.P. Draw its projections.
6. A hexagonal pyramid, side of the base 25 mm long and height 70 mm , has one of its triangular faces perpendicular to the H.P. and inclined at 45° to the V.P. The base-side of this triangular face is parallel to the H.P. Draw its projections. [16]
7. Draw the isometric view of the block, two views of which are shown in figure 7 . (All dimensions are in mm).

Figure 7
8. Draw the elevation, plan and right side view of the part shown in figure 8 (All dimensions are in mm).

Figure 8

I B.Tech Supplimentary Examinations, Aug/Sep 2008 ENGINEERING DRAWING

 (Common to Bio-Medical Engineering, Information Technology, Electronics

 (Common to Bio-Medical Engineering, Information Technology, Electronics \& Telematics and Instrumentation \& Control Engineering) \& Telematics and Instrumentation \& Control Engineering)
 Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. (a) Two points A and B are 100 mm apart. A point C is 75 mm from A and 60 mm from B. Draw an ellipse passing through A, B and C.
(b) The foci of an ellipse are 85 mm apart and the minor axis is 60 mm long. Determine the length of the major axis and draw the ellipse by oblong method.
[8+8]
2. A circle of 40 mm diameter rolls an a straight line without slipping. In the initial position the diameter PQ of the circle is parallel to the line on which it rolls. Draw the locus of the points P and Q for one complete revolution of the circle. [16]
3. (a) Point A is 20 mm above H.P. and 30 mm infront of V.P. Draw its front view and top view.
(b) A point M is 35 mm above H.P. and 45 mm in front of V.P. Draw its projections.
(c) Draw the projections of a point A lying on H.P. and 30 mm infront of V.P.
$[4+8+4]$
4. Draw the projections of a 70 mm long straight line, in the following positions:
(a) Parallel to and 40 mm in front of the V.P and in the H.P.
(b) Perpendicular to the H.P, 20 mm in front of the V.P and its one end 15 mm above the H.P.
(c) Perpendicular to the H.P, in the V.P. and its one end in the H.P.
(d) Inclined at 45° to the V.P, in the H.P. and its one end in the V.P. [4×4]
5. A regular pentagon of length of 30 mm side, has one of its corners on V.P. and its surface is inclined at 60° to V.P. The edge, opposite to the corner on V.P, makes an angle of 45° with H.P. Draw the projection of the plane.
6. (a) Draw the projections of a pentagonal pyramid, base 30 mm edge and axis 50 mm long, having its base on the H.P. and an edge of the base parallel to the V.P. Also draw its side view.
(b) Draw the projections of a hexagonal pyramid, base 30 mm side and axis 60 mm long, having its base on the H.P. and one of the edges of the base inclined at 45^{0} to the V.P.
(c) A square pyramid, base 40 mm side and axis 65 mm , long has its base in the V.P. One edge of the base is inclined at 30° to the H.P. and a corner contained by that edge is on the H.P. Draw its Projections.
$[4+8+4]$

Set No. 4

7. Draw the isometric view of the block, two views of which are shown in figure 7 . (All dimensions are in mm).

Figure 7
8. Draw the front view, top view and left side view of the object shown in figure 8 . (All dimensions are in mm).

Figure 8

