Total No. of Questions: 12] [Total No. of Printed Pages: 4 [3861]-154

F. E. (Semester - I) Examination - 2010 BASIC ELECTRICAL ENGINEERING (2008 Pattern)

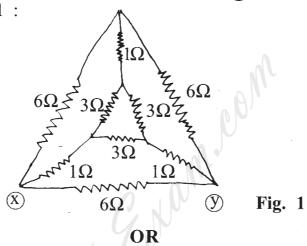
Time: 3 Hours]

[Max. Marks: 100

Instructions:

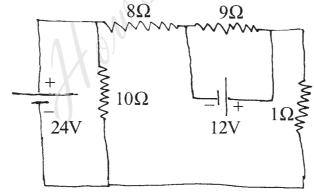
- (1) Answers to the two sections should be written in separate answer-books.
- (2) Answer Q. No. 1 or Q. No. 2, Q. NO. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8, Q. No. 9 or Q. No. 10 and Q. No. 11 or Q. No. 12.
- (3) Figures to the right indicate full marks.
- (4) Neat diagrams must be drawn wherever necessary.
- (5) Use of non-programmable pocket size scientific calculator is permitted.
- (6) Assume suitable additional data, if necessary.

SECTION - I


- Q.1) (A) What is Insulation Resistance? State its unit and obtain an expression for Insulation Resistance of the Cable. [08]
 - (B) With neat sketch explain Construction and Working of Lead Acid Cell. [08]

OR

Q.2) (A) A resistance element having cross-sectional area of 10 mm² and length of 10 meter takes a current of 4 Amp from 200V supply at temperature of 25°C. Find (i) resistivity of the material and (ii) current it will take when temperature rises to 75°C. Assume $\alpha_{25} = .0003$ /°C. [06]


[3861]-154 1 P.T.O.

- (B) If α_1 and α_2 are the two resistance temperature coefficients at t_1 °C and t_2 °C, then prove that $(\alpha_1 \alpha_2) = \alpha_1 \alpha_2 (t_2 t_1)$. [06]
- (C) State applications of Nickel-Iron Cell and Nickel-Cadmium Cell. [04]
- Q.3) (A) State and explain Superposition Theorem as applied to Simple DC Circuit. [06]
 - (B) State and explain Kirchoff's Laws. [04]
 - (C) Determine resistance between (x) and (y) for the circuit shown in fig. 1: [06]

Q.4) (A) State and explain Maximum Power Transfer Theorem. [06]

(B) Apply Thevenin's Theorem to the circuit show in fig. 2 to calculate current in 01Ω resistance: [10]

Q.5) (A) Compare Electric and Magnetic Circuit.

(B) Write short notes: [10]

[80]

- (a) Magnetic Leakage and Fringing.
- (b) Energy stored in a Magnetic Field.

OR

[3861]-154 2 Contd.

Q.6)	(A)	Explain what do you mean by Statically Induced emf and Dynamically Induced emf?	[06]
	(B)	A steel ring of 25 cm mean diameter and of circular cross-section 3 cm diameter has an air gap of 1.5 mm length. It is wound uniformly with 700 turns of wire carrying a current of 2 Amp. Calculate:	
		(a) MMF	
		(b) Flux Density	
		(c) Reluctance and	
		(d) Relative Permeability of Steel Ring SECTION - II	[12]
Q.7)	(A)	Define w.r.t. alternating quantities :	[09]
		(a) Instantenous Value	
		(b) Waveform	
		(c) Cycle	
		(d) Amplitude	
		(e) Periodic Time	
		(f) Frequency	
	(B)	Sketch Waveforms of Currents and find its rms value and average value for the equation :	[08]
		(a) $i_1 = 15 \sin (314.159 t)$ and	
		(b) $i_2 = 10 \sin (314.159 t - \pi/2)$	
		OR	
Q.8)	(A)	Prove that rms value of the sinusoidal alternating current is 0.707 times its maximum value.	[06]
	(B)	Derive expression for energy stored in a capacitor.	[06]
	(C)	Two capacitors of $50\mu F$ each are connected in parallel with each other and this combination is connected in series with two capacitors of $80\mu F$ of $40\mu F$ each. Calculate equivalent capacitance of the circuit.	[05]
[3861]-154		3 P.7	Г.О.

		(a) Active Power	
		(b) Reactive Power	
		(c) Impedance	
		(d) Admittance	
	(B)	A Circuit consisting of Resistance of 20Ω and Inductance of 0.1 Henry is connected in series across single phase 200V, 50 Hz supply. Calculate: (a) Current Drawn (b) Power Consumed (c) Draw relevant Phasor Diagram	[09]
	4.4.5	OR	
Q.10)	(A)	A Coil of Resistance 50Ω and Inductance of 0.1 H is connected in parallel with a branch which consists of resistance of 45Ω in series with a capacitor of $100~\mu F$ across a single phase 230V, 50Hz supply. Calculate Current, Power and p.f. of the Circuit.	[09]
	(B)	If a sinusoidal voltage of $\mathcal{V} = V_m$ sinwt is applied across R-C series circuit, derive expression for current drawn and power consumed. Draw their waveforms also.	[08]
Q.11)	(A)	Write short notes:	[08]
- ,	` ′	(a) Losses taking place in Transformer	
		(b) An Autotransformer	
	(B)	Draw a complete phasor diagram for a 3 phase delta connected inductive balanced load supplied for 3-phase symmetrical A.C. supply. State equation for Active Power and Reactive Power consumed by Load.	[08]
		OR	
Q.12)	(A)	A balanced Star Connected Load is supplied by 3-phase, 415V, 50H z supply. Current in phase is 20 Amp and lags 30° behind its phase voltage. Find: (a) Power Consumed by Load (b) Circuit Parameters and	
		(b) Circuit Parameters, and(c) Load p.f.	[00]
	(B)	Explain working principle of transformer and derive expression	[08]
	(D)	for emf induced in its winding.	[08]
		[3861]-154/4	

Q.9) (A) Define and explain following terms:

[08]