F. E. (Semester - I) Examination - 2010 BASIC ELECTRICAL ENGINEERING (June 2008 Pattern)

Time : 3 Hours] Instructions :
(1) In section I, attempt $Q .1$ or $Q .2, Q . \operatorname{SO}^{Q}$. 4, Q. 5 or Q. 6. In section II, attempt Q. 7 Q. 8, Q. 9 or Q. $10, Q .11$ or $Q .12$.
[Max. Marks : 100
(2) Answers to the two sections should (Ge) vritten in separate answer-books.
(3) Figures to the right indicate null nerks.
(4) Neat diagrams must be dran herever necessary.
(5) Use of non-programmable electronic pocket calculator is allowed.
(6) Assume suitable data, Cgcessary.

SECTION - I

Q.1) (A) How materials are chassiffed as Conductor, Insulator and Semiconductor. Giva two examples of each.
(B) An electric pump ifts $0 \mathrm{~m}^{3}$ of water per hour to a height of 25 meter. The wht efficiency is 86% and motor efficiency is 78%. Theump is used for three hours daily. Find energy consumed per Week, if one m^{3} of water is 1000 kg .
(C) Explain the Oarging of Lead Acid Battery with chemical reaction. What are the changes taking place during charging ?
OR
Q.2) (A) Ohe the expression for $\alpha_{2}=\alpha_{1} / 1+\alpha_{1}\left(t_{2}-t_{1}\right)$.
(B) electric furnace is used to melt aluminum. Initial temperature the solid aluminum is $32^{\circ} \mathrm{C}$ and its melting point is $680^{\circ} \mathrm{C}$. Specific heat capacity of aluminum is $0.95 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{K}$ and the heat required to melt 1 kg of aluminum at its melting point is 450 kJ . If the input power drawn by the furnace is 20 kW and its overall efficiency is 60%. Find the mass of aluminum melted per hour.
(C) What is Insulation Resistance ? What are the factors on which insulation resistance of a single core cable depends ?
Q.3) (A) State and explain Superposition Theorem.
(B) Using Kirchhoff's Laws, find the current delivered by 12 V battery as shown in the Fig. 1.

Q.4) (A) Derive an expression to convert \&tar Connected Network into its Equivalent Delta Network.
(B) Using Thevenin's Theorem firde current flowing through

(1) MMF^{*}

(1) Pearmeance
(B) A coil M is wound around a magnetic circuit. Explain the phenomenon of self induced emf in it. Define its self inductance and state its unit. Another coil N is wound around the same magnetic circuit. Explain the phenomenon of mutual inductance between the coils and define 'coefficient of coupling' between them.
Q.6) (A) An iron ring wound with 550 turn's solenoid produces a flux density of 0.94 tesla in the ring carrying a current of 2.4 Amp . The mean length of iron path is 80 cm and that of air gap is 1 mm . Determine :
(1) The relative permeability of iron
(2) Self-inductance
(3) Energy stored in the above arrangement, if cross sectional area of ring is $25 \mathrm{cms}^{2}$.
(B) Derive the expression for the energy stored in magnetic field in terms of energy stored per unit vluye.

SECTION - II

Q.7) (A) At instant $t=0$, the instantaneous of 50 Hz sinusoidal current is +5 Amp and increases magnitude further. Its r.m.s. value is 10 Amp :
(1) Write expression for its instaneous value.
(2) Find the current at $t=01$ and $t=0.015$ second.

Sketch the waveform indicating these values.
(B) Derive Mathematic Epression for capacitor voltage and current at any in ant dring charging of capacitor through resistance. Also ke the graph of capacitor voltage and current withespect to time.
OR
Q.8) (A) A sinusoidal voltage of $\mathrm{V}=\mathrm{V}_{\mathrm{m}} \sin (\mathrm{t})$ is applied across a series R-L ircuit. Derive the expression for current and average pou onsumed by the circuit.
(B) parallel plate capacitor has plates, each area of $100 \mathrm{~cm}^{2}$, Pmated by a distance of 3 cms . The dielectric between the prates has relative permittivity of 2.2 . The potential difference between the plates is 10 kV . Find (1) Capacitance of the Capacitor (2) The Electric Flux Density, (3) The Electric Field strength, (4) Energy Stored.
Q.9) (A) Sketch and explain Phasor diagram of an RLC series circuit when (1) $X_{C}>X_{L}$
(2) $X_{C}=X_{L}$
(3) $X_{C}<X_{L}$.
(B) A series circuit consisting of a 12Ω resistance, 0.3 henry inductance and a variable capacitor is connected across 100 V , 50 Hz A.C. Supply. The capacitance value is adjusted to obtain maximum current. Find this capacitance value and the power drawn by the circuit under this condition. Now supply frequency is raised to 60 Hz , the voltage remaining same at 100 V . Find the value of inductive and capacitive reacta
Q.10) (A) What is admittance of an AC Circuit ? Whare its two components ? State the units of these quanties How is admittance expressed in rectangular and prarm for
(B) Two circuits the impedances of which are given by $Z_{1}=(12+j 16)$ Ohm and $Z_{2}=(8-j 4)$ Ohm are connected in parallel across the potential diffeng of $(23+j 0)$ volts. Calculate : (1) The Total Current Dran (2) Total Power and Branch Power consumed and (3) Overall Power Factor of the circuit.
Q.11) (A) Derive and explain with Plesor aram the relations between Line Values and Phase Va ues Current and voltages for a 3 -phase balanced delt connected lagging power factor load.
(B) The three equal impedarves of each of $10 \angle 60^{\circ}$ Ohms are connected in star 3 -phase, 400 volts 50 Hz supply. Calculate :
(1) Line Volta ad Phase Voltage
(2) Power and Active Power consumed
(3) If the ame three impedances are connected in delta to the sund source of supply what is the active power consumed ?
(C) Differntiate Shell Type and Core Type Transformer.

OR

Q.12) (A) $5 \mathrm{kVA}, 50 \mathrm{~Hz}$, Single Phase Transformer has the iron loss full load copper loss of 350 and 400 watts respectively. Find the efficiency of the transformer at (1) 50% of full load at unity p.f. and (2) 75% of full load at 0.8 lagging p.f.
(B) What is an Auto Transformer? State the advantages, limitations and applications.
(C) Explain the Concept of Balanced Loading.

