2010 – 2011 B.Sc. (HONS.) (PART – III) EXAMINATION (PHYSICS) NUCLEAR PRACTICE AND ASTROPHYSICS

(PH - 316)

Maximum Marks: 40 Duration: Three Hours

Note: Answer all questions.

- 1.(a) What are the important components of a mass spectrograph? Discus the working principle of Bainbridge mass spectrograph. [4]
 - (b) Draw a typical binding energy per nucleon curve for nuclei existing in nature and hence explain how the energy is released in the process of fission.

OR

- 1'.(a) Discuss the high energy electron scattering experiment to determine the size of the nucleus. [4]
 - (b) On the basis of uncertainty principle show that electrons cannot be constituent of the nucleus. [3]
- 2. Answer any two of the following:

[3+3]

- (a) What are the basic differences between the energy spectrum of alpha and beta particles obtained in natural radioactive decay? Discuss the reason(s) for the typical nature of alpha particle spectrum.
- (b) Discuss the energetics of positron decay.
- (c) Define Q-value of a nuclear reaction. Calculate the Q-value for the reaction ^{14}N (α , p) ^{17}O , in MeV. Given, Mass of $^{4}He = 4.002603$ u, $^{14}N = 14.003074$ u, $^{1}H = 1.007825$ u and $^{17}O = 16.999131$ u.
- 3.(a) Discuss the interaction processes by which 10 MeV gamma ray loses energy while passing through matter. [4]
 - (b) Draw the block diagram of a NaI(Tl) scintillation gamma ray spectrometer. Discuss briefly the function of each block. Also draw a typical gamma ray spectrum of ¹³⁷Cs gamma ray source, obtained using such spectrometer.
- 4.(a) Distinguish between Fermions and Bosons.

[2]

[3]

- (b) Apply conservation laws to find whether the following reactions are allowed or forbidden. Give the quantum numbers which are not conserved for the forbidden reactions.
 - (i) $\overline{v_e} + p \rightarrow n + e^+$
 - (ii) $\pi^+ + n \rightarrow \wedge^\circ + K^+$
 - (iii) $n \rightarrow p + e + v_a$

(c)	Name various quark flavours. Write their quantum numbers.	[2
	OR	
4'.	Explain the difference between even and odd parity. Show that the pion parity is odd.	[7
5 (a)	What are secondary cosmic rays? Explain the development of electromagnetic cascade shower.	[4
(b)	Plot the energy spectrum of primary cosmic rays and discuss its important features.	[3
6.	Write notes on any two of the following:	[3+3
	(a) Hydrostatic and Thermal equilibrium in stars.	

(b)

(c)

Hertzsprung - Russel diagram

Black holes.