4292

2008-2009 B.Sc.(HONS.) (PART-III) EXAMINATION (PHYSICS) MATHEMATICAL METHODS (PH-307)

Maximum Marks: 40

Duration: Three Hours.

Answer all questions.

Marks are indicated against each part.

1.(a) Define complex integral. If f (z) is an analytic function in a simply connected domain D, then prove that

$$\oint_{C} \frac{f(z)}{z - z_{0}} dz = 2\pi i f(z_{0})$$

where z_0 is some point in the interior region bounded by curve C in domain D.

04

(b) Develop the Taylor series expansion of $\ln (1+z)$ for |z| < 1.

03

2.(a) State and prove Divergence theorem of Gauss.

04

(b) Prove that line integral

$$\int_{C} \overline{F}(r) \cdot dr = \int_{C} (F_1 dx + F_2 dy + F_3 dz)$$

is independent of path if and only of $\vec{F} = [F_1, F_2, F_3]$ is a gradient of some function f in D i.e. $\vec{F} = \text{grad}$ f.

03

OR

2'(a) Show that the scale factors h_j corresponding to curvilinear coordinates q_j for orthogonal system are given by the relation

$$h_{j}^{2} = \sum_{k=1}^{3} \left(\frac{\partial x_{k}}{\partial q_{j}} \right)^{2}$$

where x_k are the Cartesian coordinates.

05

(b) Calculate the Spherical polar coordinates scale factors h $_{\tau}$, h $_{\theta}$ and h $_{\phi}$.

02

3.(a) Define Gamma function in integral form and show that $\Gamma(\bar{n}+1) = n!$.

03

(b) Establish the following differential formula for Hermite polynomials:

03

$$H_n(x) = (-1)^n \frac{d^n(e^{-x^2})}{dx^n}$$
.

....2

,

1

03

03

03

- 4.(a)For Legendre polynomial $P_n(x)$ prove that:
 - $\int_{-1}^{1} P_n(x) P_m(x) dx = 0 \quad \text{for } n \neq m$
 - Show that $n P_n(x) = (2 n 1) x P_{n-1}(x) (n-1) P_{n-2}(x)$. (b) 04
- 4'(a) Find the Associated Legendre equation from Legendre differential equation. 03
 - (b) Find the value of Spherical harmonics Y_{10} . 04
- 5.(a) A triangular wave is represented by the function f(x) as

$$f(x) = \begin{cases} x & \text{if } 0 < x < \pi \\ -x & \text{if } -\pi < x < 0. \end{cases}$$

Represent f(x) by a Fourier series.

Consider a thin circular plate whose faces are impervious to heat flow and whose circular edge is kept at zero temperature. At t = 0, the initial temperature of the plate is a function of the distance from the centre of the plate. Find the expression 04 for the subsequent temperature.

OR

5'(a)

Represent
$$f(x) = \begin{cases} 1 & 0 < x < \frac{1}{2} \\ 0 & \frac{1}{2} < x < 1. \end{cases}$$

in a Fourier series in series and cosines.

- A bar of length 2 and uniform cross section whose surface is impervious to heat (b) flow has an initial temperature F (x). Its ends are kept at the constant temperature zero. Determine the subsequent temperature of the bar as time t increases. 04
- Obtain the solution of the non-homogeneous Fredholm equation of second kind 6.(a)03 by separable Kernel method.
- Solve the equation (b)

$$\phi(x) = 1 + \lambda \int_0^1 (1 - 3xt) \phi(t) dt$$