4480

2010 – 2011 B.Sc. (HONS.) (PART – III) EXAMINATION (PHYSICS) QUANTUM MECHANICS

(PH - 313)

Maximum Marks: 40

Duration: Three Hours

Note: Answer all questions. Use of Calculator is allowed.

Planck's constant $h = 6.63 \times 10^{-34}$ J-sec, Mass of electron $m_e = 9.1 \times 10^{-31}$ kg.

- 1. Answer any Six of the following:
 - (i) The work function of a metal is 4×10^{-19} J. Find the threshold frequency for photoelectric effect. [2]
 - (ii) Find the de Broglie wavelength for an electron of kinetic energy 10 eV. [2]
- (iii) An X-ray of wavelength 0.5 Angstrom undergoes a 60° Compton scattering. Find the wavelength of scattered photon.
 - (iv) The radius of an atomic nucleus is around 5 Fermi. Use the uncertainty principle to place a lower limit on the energy of an electron if it is to be inside the nucleus (one Fermi = 10^{-15} meters).
 - (v) The wave function of a particle in one dimensional box of length L is given by [2]

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right).$$

Find the expectation value of x.

- (vi) Evaluate $[\hat{p}_x, x]$ [2]
- (vii) What is the spacing between two consecutive energy levels of a particle in a one dimensional potential box?
- (viii) What do you understand by zero point energy of a particle in a harmonic oscillator potential?
 - (ix) The ground state wave function of an electron in hydrogen atom is given by [2]

$$\psi_{\text{nlm}} = \psi_{100} = \left(\frac{1}{\pi a_0^3}\right)^{\frac{1}{2}} e^{-\frac{r}{a_0}},$$

where a_0 is the Bohr radius, find the expectation value of the potential energy $\left(-\frac{e^2}{r}\right)$ in the above state.

4480 m machines [4] anction of a particle. [4] Three Hours non coefficient of a particle incident on a [7] nergy E of a particle is less than the barrier rödinger equation for the hydrogen atom and obtain [2] al as the energy eigenfunctions. periment and its importance. [5] spin angular momentum operators S2 and Sz for a spin - ½ particle -[5] ali matrices. Obtain the eigenfunctions of Sz operator. quantum mechanical treatment of collisions and obtain the selection [5] a scattering amplitude and differential scattering cross section. Obtain the correction to energy and wave function in first order perturbation theory. [5]