3 3

3

)

)

)

3

000

	1	 Acres and the second	 Transfer and	A national contract of	THE STREET, SAME	THE STATE OF STREET
Roll No.						

M. Tech. (Biotechnology)

SECOND SEMESTER EXAMINATION, 2009-10 FERMENTATION TECHNOLOGY

Time: 3 Hours

Total Marks: 100

- Note: (i) Attempt any Five questions.
 - (ii) Marks are indicated against each question.
 - (iii) Use of calculator is permitted.
 - (iv) Refer to η Vs ϕ and Φ Plots.
- 1. (a) Derive an expression for continuous fermentor when production is directly linked with energy metabolism.
 - (b) A strain of Escherichia coli has been genetically engineered to produce human protein. A batch culture is started by inoculating 12g cells into a 100 litre bubble column fermenter containing 10g/l glucose. The maximum specific growth rate of the culture is 0.9h⁻¹; the biomass yield from glucose is 0.575gg⁻¹.
 - (i) Estimate the time required to reach stationary phase.
 - (ii) What will be final cell density if the fermental ion is stopped after only 70% of the substrete is consumed?
- (a) Derive the substrate concentration profile in a spherical bead for first and zero order kinetics.
 - (b) Baby hamster kidney cells are immobilised in alginate beads. The average particle diameter is 5mm. Rate of oxygen consumption at bulk concentration of 8 x 10⁻³ Kg O₂ m⁻³ is 8.4 x 10⁻⁵ Kg s⁻¹ m⁻³ catalyst. The effective diffusivity of oxygen in the beads is 1.88 x 10⁻⁹ m² s⁻¹. Assume that the oxygen concentration at the surface of the catalyst is equal to the bulk concentration, and that

6

- (i) Are internal mass transfer effects significant?
- (ii) What reaction rate would be observed if diffusional resistance were eliminated?
- 3. (a) Discuss the kinetics of batch culture for substrate utilization, product formation and biomass generation.
 - (b) In a fed batch culture operating with intermittent addition of glucose solution, values of the following parameters are given at time t = 2h, when the system is at quasi steady state, $v = 1000 \, \text{ml}$, (Flow rate). $F = 200 \, \text{ml}$ /h, $S_o = 100 \, \text{glucose}$ /l, $\mu_m = 0.3 \, h^{-1}$,

 $K_s = 0.1g \text{ glucose/I}, Y_{x/s} = 0.5 gg^{-1} \text{ cells/g glucose}, X_0 = 30g.$

- (i) Find V_0 (the initial volume of the culture).
- (ii) Determine the concentration of growth limiting substrate in vessel at quasi-steady state.
- (iii) Determine the concentration and total amount of biomass in the vessel at t = 2h (at quasi-steady state).
- 4. (a) What do you understand by solid state fermentation? Discuss the factors which affect solid state fermentation.
 - (b) A solution polymerization is to be carried out to 95% conversion in a series of stirred tank reactors, all operating at the same temperature. Batch tests show that the reaction is first order to monomer, and 95% conversion is reached in 6 hours.
 - (i) If four reactors of equal size are used, what total residence time is needed?
 - (ii) What fraction of the total heat released is generated in each vessel?

			4 % 1 km²	1721
Ę	5.	(a)	Comment on medium formulation. Discuss the major comp	oneni.
			of fermentation media.	10
		(b)	Discuss the industrial production of ethanol. Comment of	n the
			factors which affect the production of ethanol.	10
(3.	(a)	What do you mean by scale up? Discuss the physic	al or
			biological parameters of scale up in detail.	10
		(b)	Let us have a bubble column with an H/D ratio of 3, dia	meter
			0.5m and a gas flow rate of 0.1 m ³ h ⁻¹ , which gives a supe	rficial
			gas velocity of 0.25m s ⁻¹ . What would be the liquid media	a flow
			rate?	10
			OR	
			Explain the principle and working of commonly used sens	ors in
			bioprosessing industry.	20
			(γ, γ)	
7	7.	Write	short notes on any Four:	20
		(a)	Biosensors	
		(b)	L-Lysine production	
		(c)	Rules of thumb for scale up	
	,	(d)	Fed batch culture	
		(e)	Effectiveness factor (internal and external)	
		(f)	On line controllers •	
		(g)	Scale down	