MCA (Revised)

Term-End Examination

June, 2011

MCS-031 : DESIGN AND ANALYSIS OF ALGORITHM

Time : 3 hours
Maximum Marks : 100
Note: Question No. 1 is compulsory. Attempt any three from the rest of the questions.

1. (a) Arrange the following growth rates in 4 increasing order: $\mathrm{O}\left(3^{n}\right), \mathrm{O}\left(\mathrm{n}^{2}\right), \mathrm{O}(1)$, $O(n \log n)$
(b) Briefly discuss three basic actions and 4 instructions that build a program in Von Newmann architecture machine.
(c) Write a recursive algorithm that finds the 4 sum of first n natural numbers.
(d) Explain briefly The Fermat's Last Theorem. 4
(e) Using Principle of Mathematical Induction, 4 Prove that the sum $2^{0}+2^{1}+\ldots+2^{n}$ is $2^{\mathrm{n}+1}-1$ for all $\mathrm{n} \geqslant 1$.
(f) Using Insertion Sort or Bubble Sort, sort the 4 following sequence in increasing order :
$35,37,18,15,40,12$
(g) Define Knapsack Problem and cite one instance of the problem.
(h) Consider a (hypothetical) country in which 4 only notes available are of denominations 10,40 and 60 . Using Greedy algorithm, how do we collect an amount of 80 .
(i) Briefly explain Kruskal's OR Prim's 4 algorithm for finding minimal spanning tree of a graph.
(j) Name four undecidable problems, each with brief description.
2. (a) Using Dijkstra's algorithm, find the $\mathbf{1 0}$ minimum distances of all the nodes from node ' b ' which is taken as the source node, for the following graph.

(b) Find a regular expression for the language
$\{\wedge, \mathrm{a}, \mathrm{abb}, \mathrm{abbb}, \mathrm{abbbbb}, \ldots .$.
(c) Briefly discuss Chomsky classification for 5 Grammars.
3. (a) Trace how BFS (Breadth - First Search) 8 traverses, i.e, discovers and visits the graph given below when starting at node A.

(b) Write pseudo-code for Depth-First search.
(c) Find the value of $(12)^{31}$ using not more than 7 SIX multiplications and/or divisions.
4. (a) Write a program that computes the length 6 of the diagonal of a right - angled triangle, the length of the two sides of which are given.
(b) For the function $f(x)=4 x^{3}+6 x+1$ show 6 that (i) $f(x)=\mathrm{O}\left(x^{4}\right)$ but (ii) $x^{4} \neq \mathrm{O}(f(x))$
(c) Sort the following sequence of numbers 8 using Quick Sort : 8, 6, 4, 12, 11, 5, 7 and 9.
5. (a) Design a Turing Machine that recognises the languages of all strings of even lengths over the alphabet $\{c, d\}$.
(b) For each of the following pairs of lists, $\mathbf{1 0}$ discuss whether PCP (Post Correspondence Problem) has a solution :

$$
\begin{align*}
& \text { List } A=(b, b a b b b, b a) \tag{i}\\
& \text { and List } B=(b b b, b a, a)
\end{align*}
$$

(ii) List $C=(a b, b, b)$ and

$$
\mathrm{D}=(\mathrm{a} b \mathrm{~b}, \mathrm{~b} a, \mathrm{~b} b)
$$

