(4293)

)3

2009–2010 B.Sc. (HONS.) (PART-III) EXAMINATION (PHYSICS)

CLASSICAL MECHANICS & SPL. RELATIVITY

(PH - 308)

03 Maximum Marks: 40

Duration: Three Hours

04

03

(04)

NOTE: (i) Answer the following questions.

- (ii) Symbols/notations, wherever not explained, have their usual meaning.
- (iii) Use of calculator is permitted.
- 1. (a) Explain, giving appropriate examples, what are holonomic constraints. Explain what difficulties do the constraints of motion introduce in the solution of mechanical problems and how are these difficulties removed.
 - (b) Express the kinetic energy of a system of particles in terms of generalized coordinates. (04) What will be its nature if the transformation equations defining generalized coordinates do not contain the time explicitly?

OF

- 1'. (a) Define the terms : generalized coordinates and generalized momentum. Derive the relation which represents D'Alembert's principle.
- (03) (b) Show that : $\frac{\partial \vec{r}_i}{\partial q_j} = \frac{\partial \dot{\vec{r}}_j}{\partial \dot{q}_j}$ (01)
- (c) Construct the Lagrangian and hence obtain the equation of motion of a simple (03) pendulum.
 - 2. (a) State and explain Hamilton's principle and using this principle derive Lagrange's equations of motion. (04)
 - (b) Show that the minimum distance between two points in a plane is a straight line. (02)
 - 3. (a) Set up the Lagrangian and equations of motion of a particle moving under the influence of a central force. Hence obtain the differential equation of its orbit.
 - (b) Obtain the relation which represents virial theorem. Use this theorem to derive Boyle's law for perfect gases. (02)

OR

- (01)
 3'. (a) Derive the equation of the orbit of a particle moving under the influence of an attractive inverse square law force. What will be the shape of the orbit for: (i) E > 0 and (ii) E<0?
 - (b) The orbit described by a particle under a central force is given by $r = a (1+\cos\theta)$, where (02) 'a' is a constant. Find the force law.
 - 4. (a) Derive the Rutherford scattering cross-section. Explain why does the total cross-section (05) tend to become infinite.

(4293

- (b) A proton collides elasticity with a pion at rest in Lab. frame. Calculate the maximum scattering angle in the Lab. frame, $(\theta_1)_{max}$.
- 5. Answer any THREE parts of the following: (2x3)
 - (a) Explain the inner and outer products of two tensors.
 - (b) Write the Newton's equation of motion in covariant form. Discuss the space and time parts of this equation.
 - (c) Calculate the threshold energy of the incident proton for the following reaction:

$$p + p \longrightarrow \pi^{0} + p + n + \pi^{+}$$

(Take $m_p = m_n = 940 \text{ Mev/c}^2$ and $m_{\pi^+} = m_{\pi 0} = 140 \text{ Mev/c}^2$)

- (d) Write the formulae for the kinetic energy and momentum of a relativistic particle in terms of its Lorentz factor. Calculate the values of these quantities for an electron of rest mass 0.51MeV/c^2 moving with a velocity $(\sqrt{2/3})c$.
- (e) Derive expressions for Lagrangian and Hamiltonian of a relativistic free particle.
- 6. (a) Define the electromagnetic field tensor in terms of four-potential vector. Obtain the elements of $F_{\mu\nu}$ in terms of the components of \vec{E} and \vec{B} vectors.

OR

- (a') State and explain gauge transformation and gauge invariance of fields.
- (b) Show that $F'_{\mu\nu} = a_{\mu\alpha} a_{\nu\beta} F_{\alpha\beta}$ and hence obtain the transformations for the components of E and B vectors.