3)

14)

(4294)

111

2009-2010

B.Sc. (Hons.) (PART – III) EXAMINATION (PHYSICS)

ATOMIC, MOLECULAR, LASER AND SOLID STATE PHYSICS (PH-309)

	(111 307)	
Maximum Marks: 40 Duration: Three H		
Note:	Answer all questions.	
1. (a)	Using vector model, obtain the terms and levels of three-electron configuration spd. Explain the order of their occurrence in the light of Hund's rule.	(4
(b)	Explain the fine structure of energy level of Sodium atom. Describe the electric dipole selection rules for the observed transitions. OR	(3
1' (a)	A N	(5
(b)	Calculate the fine structure splitting of ² D term.	(2
2 (a)	Describe the rotation-vibration spectrum of a diatomic molecule. What are the selection rules to observe O,P,Q,R and S branches?	(4
(b)	Describe the formation of bonding and antibonding of 2p orbitals in accordance with molecular orbital theory. Draw the molecular orbital energy level diagram of a diatomic molecule. OR	(3
(b'		(3
3 (a)	Show that the probability of induced emission is same as the probability of induced absorption. Explain the role of metastable states in lasers.	(3
(b)	With suitable energy level diagram, explain the working of ruby laser. Explain the process of optical pumping used to achieve population inversion.	(3
4 (a)	What are symmetry operations? Describe any two symmetric operations.	(4
(b)	Discuss the origin of Van-der waals bonding. OR	(3
4' (a)	Chora DA Thus Tool Greet 12-12	(5
(b)	Show that the spacing d_{III} is approximately 1.2 times the spacing d_{200} in Pb that has fcc structure. The diameter of Pb atom is 1.8Å.	(2

- 5 (a) Discuss the role of electron and neutron diffraction in the structural analysis of crystals, mentioning the points where their application outstands from X-ray diffraction.
 - (b) Discuss the main features of acoustical and optical branches obtained in the vibrational spectrum of a linear diatomic chain.

OR

- (b') Calculate the angle of incidence at which electrons of energy 100eV must be incident on the lattice planes of a metal crystal in order to give a strong Bragg reflection in the first order, given that the lattice spacing is 2.5 Å.
- 6 (a) What is Hall effect? Mention the important applications of this (3) effect.
 - (b) Calculate the band gap for a liner mon atomic crystal using nearly (4) free electron model.
