## ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT End Semester Examination, December 2006 M.E. (VLSI Design & CAD)- 1st Year

Max. Marks: 45

(5+4)

(6+3)

(6+3)

(4+5)

(7+2)

Time Allowed: 3 Hours Note: Answer any five questions.

- QNo.1 a) State and explain the three important cases for movement of free electrons inside a crystal lattice. Which one is closest to electron motion inside a semiconductor and why?
  - significance. Establish the relation  $\rho_e = \gamma E^{1/2}$  for E<E, where  $\gamma$  is a constant.

QNo.2 Derive an expression for the Fermi level of an extrinsic semiconductor as a function of intrinsic Fermi level  $E_{F_{ij}}$  and material doping levels. Under what conditions the two Fermi levels coincide.

QNO.3 Draw the energy band diagram of a Schottry Barrier diode and obtain an expression for the device capacitance. Why V<sub>Do</sub> can not be evaluated by making measurements under forward bias?

- QNo.4 a) Prove that for a p-n junction under thermal equilibrium the Fermi level must be a constant with respect to distance x across the device.
  - b) Solve the Posson's equation for a p-n junction and obtain an expression for the depletion region width "W". How will W be modified for an abrupt junction with N<sub>D</sub> » NA?
- QNo.5 a) Draw the biasing circuit, depletion region profiles and the energy band diagram of a BJT under normal bias. Hence show how you can derive expressions for emitter current and collector current of a BJT.
  - b) If the transistor current gain  $\alpha_0$  =  $M\gamma\alpha_T$ , show when  $\alpha_0\to\infty$  and (ii)  $\alpha_0$  for  $V_{CB}$  below breakdown voltage of C-B junction.
- QNo.6

  a) Draw the structure of an n-channel enhancement mode MOSFET and explain its operation. What is channel length modulation and how does it affect the device characteristic and shape of the channel?
  - b) Show that the MOSFET drain current is linearly related to the drain voltage for  $V_{DS} \rightarrow 0$  and varies non-linearly for  $V_{DS} \leq V_{DS}$  sat.

QNo.7 Write short notes on any two of the following:-

- a) Degenerate Semiconductors
- b) Webster effect in BJT's
- c) MOSFET capacitances and breakdown

[41/2

(6+3)

+41/2)

University, placement, school and entrance exam question paper-How To Exam?