20)

END SEMESTER EXAMINATION

ST-003 THEORY OF ELASTICITY AND PLASTICITY

THAPAR INSTITUTE OF ENGINEERING AND TECHNOLOGY, PATIALA

Time: 3 HRS. MM: 100

- Attempt any five questions
- > Assuming any missing data suitably
- (i) Let x₁, x₂, x₃ be rectangular Cartesian co-ordinates and θ₁, θ₂, θ₃ be spherical polar co-ordinates having the following relationship:

$$x_1=\theta_1\;Sin\theta_2\;Cos\theta_3;\,x_2=\theta_1\;Sin\theta_2\;Sin\theta_3;\,x_3=\theta_1\;Cos\theta_2$$

Get the components of Euclidian Metric tensor and the length of the line element. (12)

- (ii) What do you understand by Cauchy's Stress Ellipsoid? Explain. (8)
- 2. (i) Derive the relation between the Lame's Coefficient and the elastic constants. (10)
 - (ii) State the conditions under which the following is the possible system of strains:

$$\mathcal{E}_{xx} = a + b (x^{2} + y^{2}) + x^{4} + y^{4}
\mathcal{E}_{xx} = \alpha + \beta (x^{2} + y^{2}) + x^{4} + y^{4}
\gamma_{xy} = A + Bxy (x^{2} + y^{2} - C^{2})
\gamma_{yz} = 0; \ \gamma_{xz} = 0; \ \mathcal{E}_{zz} = 0$$
(10)

- As a result of measurements made on the surface of a machine component with strain gages oriented in various ways, it was established that the principal strains on the free surface are C_a = +400 x 10⁻⁶; C_b = -50 x 10⁻⁶.
 - (i) Calculate the value of maximum in plane shearing strain.
 - (ii) Find absolute maximum shearing strain for the system (Given that $\sigma_c = 0$ for the free surface and Poisson ratio, v = 0.3). (20)
- 4. (i) Explain the development of Tressca Yield criteria. (10)
 - (ii) Write a short note on Plastic stress strain relations. (10)

 A state of plane stress shown in figure occurs at a critical point of a steel machine component.

- (i) Determine whether the machine will fail or not if the tensile yield strength is σ_y = 250MPa for the grade of steel used by using maximum shearing stress criteria.
- (ii) Determine the factor of safety with respect to yield using both the maximum shearing stress criteria and maximum distortion energy criteria. (20)
- 6. (i) What is a Viscoelastic material. Explain the different ways to model its behaviour.

 (10)
 - (ii) Explain the true Stress strain curve for a ductile material. Also, illustrate the influence of Bauschinger Effect, strain rate and temperature on the curve. (10)