Thapar University, Patiala (Punjab)

[End Sem. Examination]

M. Tech. Ist Year (Materials Science)

Course: MS-105 (Electrical and Magnetic Materials)

Time: 3 hrs. Max. Marks: 36

Note: Attempt all the questions. Question no. 1 is compulsory.

- 1. Give the reasons in support of any four of the following statements? (4×2)
- (a) Orbital motion of electron does not play any role in deciding the magnetic behavior of transition metal ions.
- (b) Materials have low work function for utilizing them as cathode.
- (c) SQUIDs are used in detecting extremely weak magnetic field.
- (d) Dielectric strength of a dielectric material must be compatible with the operating voltage of an electrical machine for using it as an insulator.
- (e) Mn in its elemental form does not show the ferromagnetism, whereas after alloying Mn with Cu, As and Sb it becomes ferromagnetic.
- 2.(a) Explain the domain dynamics during the generation of technical magnetization (M-H) curve? (2)
 - (b) What do you understand by Weiss molecular field? Explain its importance in understanding the ferromagnetic behavior of a material? (3)
 - (c) Find out the term symbol and effective number of Bohr magneton for Eu²⁺ in the configuration 4 f⁷ 5s ² 5 p ⁶? (2)
- 3. (a) What is the ionic conductivity? Write down its four applications? (2)
 - (b) A parallel plate capacitor is filled with a material which has real part of dielectric constant 2.56 and loss tangent 0.7 x 10⁻⁴ at a frequency of 1 MHz. The area of plates is 8 cm² and the separation between the plates is 0.08 mm. Calculate the capacitance and the equivalent loss resistance. (3)

- (c) Calculate the approximate value of magnetic induction for orientation energy to be comparable to thermal energy at room temperature? Given that magnetic moment = 5 μ_B . (2)
- 4. (a) Explain how a superconductor is different from a perfect conductor? (2)
 - (b) What do you understand by type-I and type-II superconductor? Give three examples from each class?
 - (c) Explain the London equations in superconductivity and hence find the expression for penetration depth $\lambda_L = (m / \mu_0 n_s q^2)^{1/2}$, where q = 2e? (3)
- 5. (a) Enumerate the dc and ac Josephson effect in superconductor by taking example of Pb/PbO₂/Pb junction? Give two application of Josephson junction? (3)
 - (b) Calculate the frequency of radiation, which Josephson junction emits when the voltage across the junction is 10 μV? (2)
 - (c) The Nb suerconductor has density of charge carriers is 5.5 × 10²⁸/m³. Calculate the value of London penetration depth in Nb in nm? (2)