Deptt of Chemical Engg CH-029 Catalytic Processes (7th Sem)

End-Semester Examination, 07/12/2006, 014:00-17:00Hrs

Time: 3 hr MM: 45

All questions are compulsory.

- 1 Explain the following statements:
 - Appreciable temperature gradients exist along the radial direction in a fixed bed catalytic reactor.
 - In a slurry reactor significant liquid-solid mass transfer resistance exists despite uniform mechanical mixing of the catalyst slurry.
 - In a fluidized bed reactor both internal and external resistance to mass transfer is negligible.
 - d) Surface area of Nickel catalyst determined using BET method was 500 m²/gm but the area found by chemisorbing hydrogen gas on Nickel was only 150 m²/gm.
 - e) The global reaction rate of a gas-solid catalytic reaction carried out in a fixed bed reactor increases with increase in the gas flow rate through the reactor and reaches a maximum value. Thereafter any increase in gas flow has no influence on the global rate of reaction.
- 2 Discuss the variation of heat transfer coefficient h along axial and radial position in a cylindrical fixed bed reactor using solid catalyst in pelleted form. The gaseous reactants enter one end and flows along the axis of the cylindrical reactor.
- 3 (a)Following data were obtained at for 70 degree C for the equilibrium adsorption of n-hexane on silica gel particles.

Partial pressure of C ₆ H ₁₄ in gas x10 ³ ,atm	2	4	8	1.3	15.6	20.6
C ₆ H ₁₄ adsorbed x 10 ⁵ , gmol/(g gel)	10.5	16	27.2	34.6	43	47.3

Determine how well the Langmuir isotherm fits these data. Also find $\,{}^t\!C_m$ and K_C

(b) Amount of a gas adsorbed per unit mass of a solid catalyst decreases as the temperature of the gas-solid system is increased and it reaches a minimum at around critical temperature of the adsorbing gas. As the temperature is further raised, the amount of gas adsorbed starts increasing with increase in temperature; reaches a maximum value and starts decreasing with further in temperature. Explain this observation with the help of chemisorption and physical adsorption. 10

ttp:	(a) Pwo samples of silica alumina catalysts have particle densities of 1.126 and 0.962 gm/cm ³ respectively as determined by mercury displacement. The true density of solid material in each case is 2.37gm/cm ³ . The surface area of the first sample is 467 m ² /gm and that of the second is 372 m ² /gm. Which sample has the larger mean pore radius? (b) Explain the basis, the range of applicability and procedure of mercury penetration method for pore –volume determination.	4+5
5	 (a) Draw concentration profiles for a gaseous component A reacting at solid catalyst particle surface in a slurry reactor. (b) Estimate the maximum temperature difference T_S – T_b for a gas-solid catalytic reaction for which ΔH = -20,000 cal/g mol; C_p = 8 cal/g mole (K); P_t = 2 atm; T_b = 473 K. The mole fraction of reactant in the bulk gas is 0.25. If external diffusion resistance is not controlling, but C_b – C_S = C_b/2, what will be the value of T_S – T_b? (c) In isobutene-helium system, the diffusion rate of isobutane through a 1/8 inch long pelleted cylinder of alumina (dia = 1/8 inch). The measurements were at 750 mm Hg total pressure and 25degree Celsius and the diffusion direction was through the pellet parallel to the central axis. The following data are available: surface area S_g = 76 m²/g, ε_M = 0.18, ε_u = 0.34, average macro pore radius = 4800 A°; Avg micro pore size = 84 A° The mole fraction of isobutane is 1.0 on one face of the pellet and zero on the other face. The experimental results gave N_A R_g T Δr/(D_{AB} P_t(y₂-y₁) = 0.023 where N_A is the diffusion flux of isobutane D_{AB} is the bulk diffusivity of isobutane in the isobutane-helium system = 0.313 cm²/s at 25 degree C and 1 atm pressure. Calculate the experimental value of effective diffusivity. What macro pore tortuosity factor is indicated by the data AND by the random pore model? 	2 +3 +4 +3
	(d) How does the external resistance to diffusion of gaseous reactant A to	

the surface of a catalyst pellet (where reactant A is converted to product R by first order reaction) affect the experimental determination of true activation energy of the reaction?