

THAPAR INSTITUTE OF ENGINEERING & TECHNOLOGY

END SEMESTER EXAMINATION (DECEMBER 11, 2006)

B.E. Final Year Mechanical Engineering ME-017 Inspection & Quality Control

Time Allowed: 3 Hours

Max. Marks: 90

- NOTE: i) Attempt any five questions. ii) Attempt all parts of a question at one place. iii) Graph paper can be asked for. iv) Assume missing data, if any suitably.
 - v) Use of SQC tables is permitted.
- Q.1(a) Draw and explain organization chart for a typical Process Industry? (3)Distinguish between Natural Tolerance Limits and Specification Limits. (3)(b)
 - Using suitable example depict the production-inspection interactions and problems? (3) (c)
 - Explain spiral of progress in quality? (3) (d)
 - "Improving the quality of design is associated with higher cost while improving the (e) (4) quality of conformance is associated with lower cost" briefly discuss.
 - Explain appraisal cost? (f) (2)
- Q.2(a) What are the conditions under which control charts for individual and moving (4) ranges are used? Also write the control limits for these charts.
 - Explain the trends and shifts in the process level; also write the reasons behind (4) these non-random patterns?
 - The bore size on a component to be used in assembly is a critical dimension. (10)Samples of size 4 are collected and the sample average diameter and range are calculated. After 25 such samples, we have:

$$\sum_{i=1}^{25} \overline{X_i} = 107.5, \qquad \sum_{i=1}^{25} R = 12.5$$

The specifications on the bore size are 4.4 ± 0.2mm. The unit cost of scrap and rework are \$2.40 and \$0.75 respectively. The daily production rate is 1200.

- Find the trial control limits for X and R charts.
- (ii) Assuming the process in control, estimate Cp.
- (iii) Find the total daily cost of scrap and re-work.
- (iv) If the process average shifts to 4.5mm, what is the impact on the proportion of scrap and re-work produced?
- What are the advantages and disadvantages of the standardized p-chart as Q.3(a) (4) compared to regular proportion non-conforming chart?
 - The number of non-conforming items obtained from 20 random samples are shown (14) (b) in the table, the corresponding sample size is also indicated, construct a standardized p-chart and discuss your inferences.

Sample	Items Inspected	Non-conforming Items	Sample	Items Inspected	Non-conforming Items
1	50	4	11	80	6
2	90	6	12	120	8
3	100	8	13	100	20
4	90	7	14	- 80	5
5.	80	8	15	110	8
6	40	4	16	40	6
7	50	6	17	40	4
8	50	5	18	50	7
9	110	8	19	120	5
10	70	6	20	50	4

- Q.4(a) Distinguish between the producer's risk and consumer's risk and explain the terms acceptable quality level and limiting quality level in this context. (4)
 - (b) For the following two sampling plans, calculate the average total inspection for 2% (6) and 4% defective lots and comment on the results:

Plan-I N = 1000, n = 100, c = 1Plan-II N = 1500, n = 150, c = 2

- (c) Design a single sampling plan that will reject the lots that are 1.3% nonconforming 8% of the times. Use acceptance numbers of 1, 3 and 5. From a consumer's point of view, which of these three plans would you choose and why?
- Q.5 A multiple sampling plan is as under:

Sample Number	Sample Size	Acceptance Number	Rejection Number
1	50		3
2	50	1	1 3
3	30	2	. 4
4	50	3	5
5	50	5	6

(18)

(8)

Find the probability of acceptance of 1.5% defective lot. Assume the lot size to be large in comparison to the sample size. Also calculate the probability of rejection in each sample.

- Q.6(a) In the acceptance sampling under ANSI / ASQC Z1.4 standard, single sample is to be used with inspection level-II. an AQL of 4% and a lot size of 2500. What are the acceptance criteria under:
 - (i) Normal Inspection

AOOL.

- (ii) Reduced Inspection
- (iii) Tightened Inspection
- (b) Discuss the basis on which Dodge-Roming plans are formulated, and the main objective of these plans?
- (c) Explain the effect of sample size and acceptance number on shape of OC curve and protection offered by the sampling plan. (3)
- (d) Construct the operating characteristic curve for the following sampling plan: N = 1200, n = 50, c=1, if acceptable quality level is 0.5% nonconforming and limiting quality level is 8.5% nonconforming, describe the protection offered by the plan at these quality levels. Also construct the average outgoing quality curve for the same plan and find out
- Q.7(a) Explain the main processes which are necessary for structural implementation of total quality program in an industrial organization, proposed by Juran.

 (b) Explain the principle objectives of TQM. (3)
 - (c) Describe the life-cycle of a product. What probability distribution would you use to model each phase?
 - (d) Explain Sequential Reliability Testing. (5)