THAPAR INSTITUTE OF ENGINEERING AND TECHNOLOGY, PATIALA

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

EC-027 VLSI CIRCUIT DESIGN (B.E. Vth Sem EC) [4.12.2006]

Instructor: Balwant Singh

TIME: 3 HOURS

Note: 1. Attempt ANY FIVE Questions Sequentially.

- 2. Graph sheets may be asked for, if required.
- 3. All questions carry equal marks.
- 4. Make reasonable assumptions for missing information, if any.

END SEMESTER TEST

- Q I a) Describe the structure of an n-channel enhancement type MOSFET. What do you understand by flat band voltage? Explain
 - b) Find the threshold voltage and body factor γ for an n-channel transistor with an n^+ silicon gate if $t_{ox} = 200 \text{ A}^o$, $N_A = 3 \times 10^{16} \text{ cm}^{-3}$, gate doping, $N_D = 4 \times 10^{19} \text{ cm}^{-3}$, and if the number of positively charged ions at the oxide-silicon interface per area is 10^{10} cm^{-2} . (3, 6)
- Q II a) Draw and explain the energy band diagrams of:
 - i) The combined MOS system,
 - ii) The MOS structure operating in depletion mode under small gate bias.
 - b) Consider a process technology for which L_{min} = 0.4 μm , t_{ox} = 8nm, μ_n = 450 cm²/Vs , and V_t = 0.7 V.
 - (i) Find Cox and Kn.
 - (ii) For a MOSFET with W/L = 8 μ m/0.8 μ m, calculate the values of V_{GS} and V_{DSmin} needed to operate the transistor in saturation region with a DC current I_D = 100 μ A.
 - (iii) For the device in (ii), find the value of V_{GS} required to cause the device to operate as a 1000 Ω resistor for very small v_{DS} . (3, 6)
- Q III a) Discuss with neat labeled diagrams, how an inverter is fabricated in a p-well CMOS process.
 - b) For a CMOS -2 input NOR gate, draw
 - i) Circuit diagram
- ii) typical layout

(5, 4)

MAX.MARKS:45

- http://www.howtoexam.com Q IV a) Explain the time domain behavior of a CMOS bistable element along with a circuit diagram.
 - b) Draw CMOS SR latch circuit based on NOR 2 gates. Give truth table and explain the circuit operation.
- techniques. (3, 3, 3)
- Q V a) Discuss physical origin of latch up and give latch up prevention techniques.
 - b) What are the components of power dissipation in CMOS circuits? Explain in detail.
 - c) What do you understand by dynamic CMOS Logic? Describe basic CMOS dynamic gate circuit operation.
 - d) What are BiCMOS circuits? Describe.

(3, 3, 2, 1)

- Q VI a) Draw a basic resistive load inverter circuit. Derive expressions for all the critical point voltages and explain typical VTC of a resistive load inverter circuit.
 - b) Calculate tf, tpHL, tr & tpLH for the symmetric CMOS inverter.

$$V_{DD} = 5V$$
; $k'_n = 40 \mu A/V^2$, $(W/L)_N = 4 \mu m/2 \mu m$

Vtn=1V;
$$k'_p=16\mu A/V^2$$
, $(W/L)_p=8\mu m/2\mu m$ Vtp=-1V.

Use a load Capacitance of 0.1pF.

(5, 4)

- Q VII a) Find the depletion region width x_d , the depletion region charge Q_{BO} , threshold voltage with no source to body voltage V_{THO} , and body factor γ of a device with following physical parameters
 - t_{ox} = 400 A°; N_A = 1.5 x 10 16 /cm³ (substrate acceptor doping); N_D = 10 8 /cm³ (gate donor doping); N_{SS} = 5 x 10 10 /cm²(density of singly charged positive surface ions)
 - b) Calculate the ion implant dose necessary to change the threshold voltage V_{THO} of the device in (a) above to +1V or to 4V. Assume 100% ionization of implanted material.

(6, 3)