Mathematical Statistics Paper 2007

IMPORTANT NOTE FOR CANDIDATES

- Attempt ALL the 25 questions.
- Questions 1-15 (objective questions) carry six marks each and questions 16-25 (subjective questions) carry twenty one marks each.
- Write the answers to the objective questions in the Answer Table for Objective Questions provided on page 7 only.
- 1. Let the random variable X have binomial distribution with parameters 3 and θ . A test of hypothesis $H_0: \theta = 3/4$ against $H_1: \theta = 1/4$ rejects H_0 if $X \le 1$. Then the test has

(A) size =
$$5/32$$
, power = $27/32$

(B) size =
$$5/32$$
, power = $18/32$

(C) size =
$$15/32$$
, power = $27/32$

(D) size =
$$1/32$$
, power = $31/32$

2. Let X be a random variable having probability density function

$$f(x; x_0, \alpha) = \begin{cases} \frac{ax_0^{\alpha}}{x^{\alpha+1}}, & x > x_0 \\ 0, & x \le x_0 \end{cases}$$

where $\alpha>0$, $x_0>0$. If $Y=\ln\left(\frac{X}{x_0}\right)$, then P(Y>3) is (A) $e^{-3\alpha x_0}$ (B) $1-e^{-3\alpha x_0}$ (C) $e^{-3\alpha}$

(A)
$$e^{-3 \alpha x_0}$$

B)
$$1 - e^{-3\alpha x_0}$$

(C)
$$e^{-3e}$$

(D)
$$1 - e^{-3\alpha}$$

- Let $T:\mathbb{R}^3\to\mathbb{R}^2$ be a linear transformation defined by T(x,y,z)=(x+y,x-z). Then the 3. dimension of the null space of T is
 - (A) 0

(B) 1 (C) 2

(D) 3

- Let $X_1, X_2, ..., X_{2n}$ be random variables such that $V(X_i) = 4$, i = 1, 2, ..., 2nCov $(X_i,X_j)=3,\ 1\leq i\neq j\leq 2n$. Then $V(X_1-X_2+X_3-X_4+\cdots+X_{2n-1}-X_{2n})$ is
 - (A) n (B)
- Let X_1 and X_2 be independent random variables, each having exponential distribution 5. with parameter λ . Then, the conditional distribution of X_1 given $X_1 + X_2 = 1$ is

 - (C) Uniform on the interval (0,1) (B) Beta with parameters $\lambda/2$ and $\lambda/2$ (D) Gamma with mean 2λ
- Let $X_1, X_2, ..., X_n$ be a random sample from a uniform distribution on the interval $(0, \theta)$. Then the uniformly minimum variance unbiased estimator (UMVUE) of θ is
 - (A) $\left(\frac{n+1}{n}\right)X_{(n)}$ (B) $X_{(1)} + X_{(n)}$ (C) $2\overline{X}$

- 7. Let A be a 4×4 nonsingular matrix and B be the matrix obtained from A by adding to its third row twice the first row. Then $det(2A^{-1}B)$ equals
 - (A) 2

(B)

(C) 8

- 0) 16
- 8. Independent trials consisting of rolling a fair die are performed. The probability that 2 appears before 3 or 5 is
 - (A) $\frac{1}{2}$

(B) $\frac{1}{3}$

- (C)
- $\frac{1}{4}$
- $\frac{1}{5}$

9. Let $X_1, X_2, ..., X_6$ be independent random variables such that

$$P(X_i = -1) = P(X_i = 1) = \frac{1}{2}, i = 1, 2, 3, ..., 6.$$

Then $P\left[\sum_{i=1}^{6} X_i = 4\right]$ is

A) $\frac{3}{2}$

-

(C) $\frac{6}{6}$

 $\frac{1}{1}$

- Let 1, x and x^2 be the solutions of a second order linear non-homogeneous differential equation on -1 < x < 1. Then its general solution, involving arbitrary constants C_1 and C_2 , can be written as
 - (B) $C_1x + C_2x^2 + 1$ (D) $C_1 + C_2x + x^2$ (A) $C_1(1-x) + C_2(x-x^2) + 1$
 - (C) $C_1(1+x) + C_2(1+x^2) + 1$
- Let 11.

$$0, \qquad x = 0.$$

Then

- (B) f''(x) is continuous at x = 0f'(x) is continuous at x = 0
- f'(0) exists f''(0) exists
- 12. Let E and F be two events such that 0 < P(E) < 1 and $P(E \mid F) + P(E \mid F^c) = 1$. Then
 - (B) $P(E^c | F) + P(E^c | F^c) = 1$ E and F are mutually exclusive
 - (D) $P(E \mid F) + P(E^c \mid F^c) = 1$ E and F are independent

- Let X_1, X_2, \dots, X_n be a random sample from an exponential distribution with mean $1/\lambda$. The maximum likelihood estimator of the median of the distribution is

(B) $\overline{X}(\ln 2)$

- (C) $\frac{(\ln 2)}{\overline{v}}$

(D) ln(2X)

- 14. $\lim_{n \to \infty} \frac{1 2 + 3 4 + 5 6 + \dots + (-2n)}{\sqrt{n^2 + 1} + \sqrt{n^2 1}}$ equals

By changing the order of integration, the integral

can be expressed as $(A) \int_{0}^{1} \int_{1}^{\ln y} f(x,y) dx dy$

- (B) $\int_{-\infty}^{1} \int_{-\infty}^{\ln y} f(x, y) dx \, dy$

(C) $\int_{0}^{e} \int_{0}^{e^{x}} f(x,y) dx dy$

(D) $\int_{0}^{\varepsilon} \int_{0}^{1} f(x, y) dx dy$

- 16. (a) Let $f(x) = x^3 + 3x 2, x \in \mathbb{R}$. Show that the equation f(x) = 0 has only one real root. Also, find x_0 in the interval (0,1) such that the tangent to the curve y = f(x) at the point $(x_0, f(x_0))$ is parallel to the line joining the points (0, -2) and (1, 2). (9)
 - (b) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation with

$$T(1,1) = (0,0,1)$$
 and $T(1,2) = (0,1,1)$.

Then find the linear transformation T(x, y). Also, find the associated matrix referred to the standard bases. (12)

- 17. (a) Find the volume of the solid whose base is the region in the xy-plane that is bounded by the parabola $y = 2 x^2$ and the line y = x, while the top of the solid is bounded by the plane z = x + 2.
 - (b) Find all the values of x for which the series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{\left(n + \frac{1}{n}\right)}$$

converges.

(12)

The cumulative distribution function of a random variable *X* is 18.

$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{x+k}{5}, & k \le x < k+1, & k = 0,1,2 \\ 1, & x \ge 3. \end{cases}$$

Find:

- (a) P(X = j) for all non-negative integers j
- P(X > 2) $P(-1 \le X < 1)$.

 θ based on X_1, \dots, X_n . Show that it i

mean $k\theta$ and variance σ^2 for k = 1, 2, ..., n. Find the maximum likelihood estimator of θ based on $X_1, ..., X_n$. Show that it is an unbiased and consistent estimator of θ . (21)

19. Let X_1, \dots, X_n be independent random variables with X_k having normal distribution with

20. Let the joint probability mass function of random variables X and Y be given by

$$P(X = m, Y = n) = \frac{e^{-1}}{(n-m)! \, m! \, 2^n}, \ m = 0, 1, 2, ..., n; \ n = 0, 1, 2, ...$$

Find the marginal probability mass functions of X and Y. Also, find the conditional probability mass function of X given Y = 5, and that of Y given X = 6. (21)

21. Let $X_1, ..., X_n$ $(n \ge 2)$ be a random sample from a distribution having the probability mass function

$$P(X = x) = \theta(1 - \theta)^{x}, x = 0,1,2,...$$

where $0 < \theta < 1$. Show that $T = \sum_{i=1}^{n} X_i$ is a complete sufficient statistic. Find the uniformly

minimum variance unbiased estimator (UMVUE) of θ . University Exam question paper, study materials download from howtoexam.com

21)

22. Find the continuous solution of

where
$$g(x) = \begin{cases} 3, & 0 \le x < \infty; \ y(0) = 2, \\ \cos x, & x \ge \pi/2. \end{cases}$$

Let X_1, X_2, X_3, \dots be a sequence of independent and identically distributed random

variables each with mean 4 and variance 4. Show that for large
$$n$$
,

 $0.5 \le P \left[16n - 12\sqrt{n} \le \sum_{i=1}^{n} X_{2i} X_{2i-1} \le 16n + 12\sqrt{n} \right] \le 0.9.$

An urn contains ten balls of which M (an unknown number) are white. To test the hypothesis $H_0: M=3$ against $H_1: M=7$, three balls are drawn at random from the urn without replacement. If X is the number of white balls drawn, show that the most powerful test rejects H_0 if $X \ge k$, where k is a constant. Find the power, if the size of this test is 11/60. (21)

Evaluate the integral $\iint_R e^{(x^2+y^2)/2} dx dy$, where R is the region bounded by the lines y=0 and y=x, and the arcs of the circles $x^2+y^2=1$ and $x^2+y^2=2$. (9)

(b) Le

$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

(12)

Determine whether the function is continuous and differentiable at (0,0).