JAM 2006

MATHEMATICAL STATISTICS TEST PAPER

Special Instructions / Useful Data

1. For an event $A, P(A)$ denotes the probability of the event A.
2. The complement of an event is denoted by putting a superscript " c " on the event, e.g. A^{c} denotes the complement of the event A.
3. For a random variable $X, E(X)$ denotes the expectation of X and $V(X)$ denotes its variance.
4. $N\left(\mu, \sigma^{2}\right)$ denotes a normal distribution with mean μ and variance σ^{2}.
5. Standard normal random variable is a random variable having a normal distribution with mean 0 and variance 1 .
6. $P(Z>1.96)=0.025, \quad P(Z>1.65)=0.050, P(Z>0.675)=0.250$ and $P(Z>2.33)=0.010$, where Z is a standard normal random variable.
7. $P\left(\chi_{2}^{2} \geq 9.21\right)=0.01, \quad P\left(\chi_{2}^{2} \geq 0.02\right)=0.99, \quad P\left(\chi_{3}^{2} \geq 11.34\right)=0.01, \quad P\left(\chi_{4}^{2} \geq 9.49\right)=0.05$, $P\left(\chi_{4}^{2} \geq 0.71\right)=0.95, P\left(\chi_{5}^{2} \geq 11.07\right)=0.05 \quad$ and $P\left(\chi_{5}^{2} \geq 1.15\right)=0.95$, where $P\left(\chi_{n}^{2} \geq c\right)=\alpha$, where χ_{n}^{2} has a Chi-square distribution with n degrees of freedom.
8. n ! denotes the factorial of n.
9. The determinant of a square matrix A is denoted by $|A|$.
10. R: The set of all real numbers.
11. R": n-dimensional Euclidean space.
12. y^{\prime} and $y^{\prime \prime}$ denote the first and second derivatives respectively of the function $y(x)$ with respect to x.
[^0]| Optional Section Attempted | B | |
| :--- | :--- | :--- |
| | C | |

- The negative marks for the Objective type questions will be carried over to the total marks.
- Write the answers to the objective questions in the Answer Table for Objective Questions provided on page MS 11/63 only.

Compulsory Section A

1. If $a_{n}>0$ for $n \geq 1$ and $\lim _{n \rightarrow \infty}\left(a_{n}\right)^{1 / n}=L<1$, then which of the following series is not convergent?
(A) $\sum_{n=1}^{\infty} \sqrt{a_{n} a_{n+1}}$
(B) $\sum_{n=1}^{\infty} a_{n}^{2}$
(C) $\sum_{n=1}^{\infty} \sqrt{a_{n}}$
(D) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{a_{n}}}$
2. Let E and F be two mutually disjoint events. Further, let E and F be independent of G. If $p=P(E)+P(F)$ and $q=P(G)$, then $P(E \cup F \cup G)$ is
(A) $1-p q$
(B) $q+p^{2}$
(C) $p+q^{2}$
(D) $p+q-p q$
3. Let X be a continuous random variable with the probability density function symmetric about 0 . If $V(X)<\infty$, then which of the following statements is true?
(A) $E(|X|)=E(X)$
(B) $V(|X|)=V(X)$
(C) $V(|X|)<V(X)$
(D) $V(|X|)>V(X)$
4. Let

$$
f(x)=x|x|+|x-1|, \quad-\infty<x<\infty .
$$

Which of the following statements is true?
(A) f is not differentiable at $x=0$ and $x=1$.
(B) f is differentiable at $x=0$ but not differentiable at $x=1$.
(C) f is not differentiable at $x=0$ but differentiable at $x=1$.
(D) f is differentiable at $x=0$ and $x=1$.
5. Let $A \underset{\sim}{x}=\underset{\sim}{b}$ be a non-homogeneous system of linear equations. The augmented matrix $[A: \underset{\sim}{b}]$ is given by

$$
\left[\begin{array}{rrrr:r}
1 & 1 & -2 & 1 & 1 \\
-1 & 2 & 3 & -1 & 0 \\
0 & 3 & 1 & 0 & -1
\end{array}\right] .
$$

Which of the following statements is true?
(A) Rank of A is 3 .
(B) The system has no solution.
(C) The system has unique solution.
(D) The system has infinite number of solutions.
6. An archer makes 10 independent attempts at a target and his probability of hitting the target at each attempt is $\frac{5}{6}$. Then the conditional probability that his last two attempts are successful given that he has a total of 7 successful attempts is
(A) $\frac{1}{5^{5}}$
(B) $\frac{7}{15}$
(C) $\frac{25}{36}$
(D) $\frac{8!}{3!5!}\left(\frac{5}{6}\right)^{7}\left(\frac{1}{6}\right)^{3}$
7. Let

$$
f(x)=(x-1)(x-2)(x-3)(x-4)(x-5),-\infty<x<\infty .
$$

The number of distinct real roots of the equation $\frac{d}{d x} f(x)=0$ is exactly
(A) 2
(B) 3
(C) 4
(D) 5
8. Let

$$
f(x)=\frac{k|x|}{(1+|x|)^{4}}, \quad-\infty<x<\infty .
$$

Then the value of k for which $f(x)$ is a probability density function is
(A) $\frac{1}{6}$
(B) $\frac{1}{2}$
(C) 3
(D) 6
9. If $M_{X}(t)=e^{3 t+8 t^{2}}$ is the moment generating function of a random variable X, then $P(-4.84<X \leq 9.60)$ is
(A) equal to 0.700
(B) equal to 0.925
(C) equal to 0.975
(D) greater than 0.999
10. Let X be a binomial random variable with parameters n and p, where n is a positive integer and $0 \leq p \leq 1$. If $\alpha=P(|X-n p| \geq \sqrt{n})$, then which of the following statements holds true for all n and p ?
(A) $0 \leq \alpha \leq \frac{1}{4}$
(B) $\frac{1}{4}<\alpha \leq \frac{1}{2}$
(C) $\frac{1}{2}<\alpha<\frac{3}{4}$
(D) $\frac{3}{4} \leq \alpha \leq 1$
11. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a Bernoulli distribution with parameter $p ; 0 \leq p \leq 1$. The bias of the estimator $\frac{\sqrt{n}+2 \sum_{i=1}^{n} X_{i}}{2(n+\sqrt{n})}$ for estimating p is equal to
(A) $\frac{1}{\sqrt{n}+1}\left(p-\frac{1}{2}\right)$
(B) $\frac{1}{n+\sqrt{n}}\left(\frac{1}{2}-p\right)$
(C) $\frac{1}{\sqrt{n}+1}\left(\frac{1}{2}+\frac{p}{\sqrt{n}}\right)-p$
(D) $\frac{1}{\sqrt{n}+1}\left(\frac{1}{2}-p\right)$
12. Let the joint probability density function of X and Y be

$$
f(x, y)= \begin{cases}e^{-x}, & \text { if } 0 \leq y \leq x<\infty, \\ 0, & \text { otherwise }\end{cases}
$$

Then $E(X)$ is
(A) 0.5
(B) 1
(C) 2
(D) 6
13. Let $f: \square \rightarrow \square$ be defined as

$$
f(t)=\left\{\begin{array}{cc}
\frac{\tan t}{t}, & t \neq 0 \\
1, & t=0
\end{array}\right.
$$

Then the value of $\lim _{x \rightarrow 0} \frac{1}{x^{2}} \int_{x^{2}}^{x^{3}} f(t) d t$
(A) is equal to -1
(B) is equal to 0
(C) is equal to 1
(D) does not exist
14. Let X and Y have the joint probability mass function;

$$
P(X=x, Y=y)=\frac{1}{2^{y+2}(y+1)}\left(\frac{2 y+1}{2 y+2}\right)^{x}, \quad x, y=0,1,2, \ldots .
$$

Then the marginal distribution of Y is
(A) Poisson with parameter $\lambda=\frac{1}{4}$
(B) Poisson with parameter $\lambda=\frac{1}{2}$
(C) Geometric with parameter $p=\frac{1}{4}$
(D) Geometric with parameter $p=\frac{1}{2}$
15. Let X_{1}, X_{2} and X_{3} be a random sample from a $N(3,12)$ distribution. If $\bar{X}=\frac{1}{3} \sum_{i=1}^{3} X_{i}$ and $S^{2}=\frac{1}{2} \sum_{i=1}^{3}\left(X_{i}-\bar{X}\right)^{2}$ denote the sample mean and the sample variance respectively, then $P\left(1.65<\bar{X} \leq 4.35,0.12<S^{2} \leq 55.26\right)$ is
(A) 0.49
(B) 0.50
(C) 0.98
(D) none of the above
16. (a) Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an exponential distribution with the probability density function;

$$
f(x ; \theta)= \begin{cases}\theta e^{-\theta x}, & \text { if } x>0 \\ 0, & \text { otherwise }\end{cases}
$$

where $\theta>0$. Obtain the maximum likelihood estimator of $P(X>10)$. 9 Marks
(b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a discrete distribution with the probability mass function given by

$$
P(X=0)=\frac{1-\theta}{2} ; \quad P(X=1)=\frac{1}{2} ; \quad P(X=2)=\frac{\theta}{2}, \quad 0 \leq \theta \leq 1 .
$$

Find the method of moments estimator for θ.
17. (a) Let A be a non-singular matrix of order $n(n>1)$, with $|A|=k$. If $\operatorname{adj}(A)$ denotes the adjoint of the matrix A, find the value of $|\operatorname{adj}(A)|$.
(b) Determine the values of a, b and c so that $(1,0,-1)$ and $(0,1,-1)$ are eigenvectors of the matrix,

$$
\left[\begin{array}{lll}
2 & 1 & 1 \\
a & 3 & 2 \\
3 & b & c
\end{array}\right] .
$$

9 Marks
18. (a) Using Lagrange's mean value theorem, prove that

$$
\frac{b-a}{1+b^{2}}<\tan ^{-1} b-\tan ^{-1} a<\frac{b-a}{1+a^{2}}
$$

where $0<\tan ^{-1} a<\tan ^{-1} b<\frac{\pi}{2}$.
6 Marks
(b) Find the area of the region in the first quadrant that is bounded by $y=\sqrt{x}, y=x-2$ and the x-axis .
19. Let X and Y have the joint probability density function;

$$
f(x, y)=\left\{\begin{array}{lc}
c x y e^{-\left(x^{2}+2 y^{2}\right)}, & \text { if } x>0, y>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Evaluate the constant c and $P\left(X^{2}>Y^{2}\right)$.
20. Let $P Q$ be a line segment of length β and midpoint R. A point S is chosen at random on $P Q$. Let X, the distance from S to P, be a random variable having the uniform distribution on the interval $(0, \beta)$. Find the probability that $P S, Q S$ and $P R$ form the sides of a triangle.
21. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $N(\mu, 1)$ distribution. For testing $H_{0}: \mu=10$ against $H_{1}: \mu=11$, the most powerful critical region is $\bar{X} \geq k$, where $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Find k in terms of n such that the size of this test is 0.05 . Further determine the minimum sample size n so that the power of this test is at least 0.95 .
22. Consider the sequence $\left\{s_{n}\right\}, n \geq 1$, of positive real numbers satisfying the recurrence relation

$$
s_{n-1}+s_{n}=2 s_{n+1} \text { for all } n \geq 2 .
$$

(a) Show that $\left|s_{n+1}-s_{n}\right|=\frac{1}{2^{n-1}}\left|s_{2}-s_{1}\right|$ for all $n \geq 1$.
(b) Prove that $\left\{s_{n}\right\}$ is a convergent sequence.
23. The cumulative distribution function of a random variable X is given by

$$
F(x)= \begin{cases}0, & \text { if } x<0 \\ \frac{1}{5}\left(1+x^{3}\right), & \text { if } 0 \leq x<1 \\ \frac{1}{5}\left[3+(x-1)^{2}\right], & \text { if } 1 \leq x<2 \\ 1, & \text { if } x \geq 2\end{cases}
$$

Find $P(0<X<2), P(0 \leq X \leq 1)$ and $P\left(\frac{1}{2} \leq X \leq \frac{3}{2}\right)$.
24. Let A and B be two events with $P(A \mid B)=0.3$ and $P\left(A \mid B^{c}\right)=0.4$. Find $P(B \mid A)$ and $P\left(B^{c} \mid A^{c}\right)$ in terms of $P(B)$. If $\frac{1}{4} \leq P(B \mid A) \leq \frac{1}{3}$ and $\frac{1}{4} \leq P\left(B^{c} \mid A^{c}\right) \leq \frac{9}{16}$, then determine the value of $P(B)$.

Optional Section B

25. Solve the initial value problem

$$
y^{\prime}-y+y^{2}\left(x^{2}+2 x+1\right)=0, \quad y(0)=1
$$

26. Let $y_{1}(x)$ and $y_{2}(x)$ be the linearly independent solutions of

$$
x y^{\prime \prime}+2 y^{\prime}+x e^{x} y=0
$$

If $W(x)=y_{1}(x) y_{2}^{\prime}(x)-y_{2}(x) y_{1}^{\prime}(x)$ with $W(1)=2$, find $W(5)$.
27. (a) Evaluate $\int_{0}^{1} \int_{y}^{1} x^{2} e^{x y} d x d y$.

9 Marks

(b) Evaluate $\iiint_{W} z d x d y d z$, where W is the region bounded by the planes $x=0, y=0, z=0, z=1$ and the cylinder $x^{2}+y^{2}=1$ with $x \geq 0, y \geq 0$.

6 Marks

28. A linear transformation $T: \square^{3} \rightarrow \square^{2}$ is given by

$$
T(x, y, z)=(3 x+11 y+5 z, x+8 y+3 z)
$$

Determine the matrix representation of this transformation relative to the ordered bases $\{(1,0,1),(0,1,1),(1,0,0)\},\{(1,1),(1,0)\}$. Also find the dimension of the null space of this transformation.
29. (a) Let $f(x, y)= \begin{cases}\frac{x^{2}+y^{2}}{x+y}, & \text { if } x+y \neq 0, \\ 0, & \text { if } x+y=0 .\end{cases}$

Determine if f is continuous at the point $(0,0)$.
(b) Find the minimum distance from the point $(1,2,0)$ to the cone $z^{2}=x^{2}+y^{2}$.

6 Marks
9 Marks

Optional Section C

30. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an exponential distribution with the probability density function;

$$
f(x ; \theta)= \begin{cases}\frac{1}{\theta} e^{-\frac{x}{\theta}}, & \text { if } x>0 \\ 0, & \text { otherwise }\end{cases}
$$

where $\theta>0$. Derive the Cramér-Rao lower bound for the variance of any unbiased estimator of θ. Hence, prove that $T=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is the uniformly minimum variance unbiased estimator of θ.
31. Let X_{1}, X_{2}, \ldots be a sequence of independently and identically distributed random variables with the probability density function;

$$
f(x)= \begin{cases}\frac{1}{2} x^{2} e^{-x}, & \text { if } x>0 \\ 0, & \text { otherwise }\end{cases}
$$

Show that $\lim _{n \rightarrow \infty} P\left(X_{1}+\ldots+X_{n} \geq 3(n-\sqrt{n})\right) \geq \frac{1}{2}$.
32. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $N\left(\mu, \sigma^{2}\right)$ distribution, where both μ and σ^{2} are unknown. Find the value of b that minimizes the mean squared error of the estimator $T_{b}=\frac{b}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ for estimating σ^{2}, where $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
33. Let $X_{1}, X_{2}, \ldots, X_{5}$ be a random sample from a $N\left(2, \sigma^{2}\right)$ distribution, where σ^{2} is unknown. Derive the most powerful test of size $\alpha=0.05$ for testing $H_{0}: \sigma^{2}=4$ against $H_{1}: \sigma^{2}=1$.
34. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a continuous distribution with the probability density function;

$$
f(x ; \lambda)= \begin{cases}\frac{2 x}{\lambda} e^{-\frac{x^{2}}{\lambda}}, & \text { if } x>0 \\ 0, & \text { otherwise }\end{cases}
$$

where $\lambda>0$. Find the maximum likelihood estimator of λ and show that it is sufficient and an unbiased estimator of λ.

[^0]: NOTE: This Question-cum-Answer book contains THREE sections, the Compulsory Section A, and the Optional Sections B and C.

 - Attempt ALL questions in the compulsory section A. It has 15 objective type questions of six marks each and also nine subjective type questions of fifteen marks each.
 - Optional Sections B and C have five subjective type questions of fifteen marks each.
 - Candidates seeking admission to either of the two programmes, M.Sc. in Applied Statistics \& Informatics at IIT Bombay and M.Sc. in Statistics \& Informatics at IIT Kharagpur, are required to attempt ONLY Section B (Mathematics) from the Optional Sections.
 - Candidates seeking admission to the programme, M.Sc. in Statistics at IIT Kanpur, are required to attempt ONLY Section C (Statistics) from the Optional Sections.
 You must therefore attempt either Optional Section B or Optional Section C depending upon the programme(s) you are seeking admission to, and accordingly tick one of the boxes given below.

