JAM 2006 MATHEMATICS TEST PAPER

NOTATIONS USED

The set of all real numbers

The set of all integers

IMPORTANT NOTE FOR CANDIDATES

Objective Part:

Attempt ALL the objective questions (Questions 1-15). Each of these questions carries six marks. Each incorrect answer carries *minus two*. Write the answers to the objective questions in the Answer Table for Objective Questions provided on page 7 only.

Subjective Part:

Attempt ALL subjective questions (Questions 16-29). Each of these questions carries fifteen marks.

1.
$$\lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n}$$
 equals

- (A) 3 (B) 2
- (C) 1
- (D) 0

2. Let
$$f(x) = (x-2)^{17}(x+5)^{24}$$
. Then

- (A) f does not have a critical point at 2
- (B) f has a minimum at 2
- (C) f has a maximum at 2
- (D) f has neither a minimum nor a maximum at 2

3. Let
$$f(x, y) = x^5 y^2 \tan^{-1} \left(\frac{y}{x} \right)$$
. Then $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$ equals

- (A) 2f
- (B) 3f
- (C) 5 f
- (D) 7f
- Let G be the set of all irrational numbers. The interior and the closure of G are denoted by G^0 and \overline{G} , respectively. Then

 - (A) $G^{0} = \phi$, $\overline{G} = G$ (B) $G^{0} = \overline{A}$, $\overline{G} = \overline{A}$ (C) $G^{0} = \phi$, $\overline{G} = \overline{A}$

 - (D) $G^0 = G \cdot \overline{G} = \overline{A}$

- Let $f(x) = \int_{\sin x}^{\cos x} e^{-t^2} dt$. Then $f'(\pi/4)$ equals

 (A) $\sqrt{1/e}$

 - (B) $-\sqrt{2/e}$
 - (C) $\sqrt{2/e}$
- Let C be the circle $x^2 + y^2 = 1$ taken in the anti-clockwise sense. Then the value of the 6. integral

$$\int_{C} \left[\left(2xy^3 + y \right) dx + \left(3x^2y^2 + 2x \right) dy \right]$$

equals

- (A) 1
- (B) $\pi/2$
- (C) π
- (D) 0
- Let r be the distance of a point P(x, y, z) from the origin O. Then ∇r is a vector 7.
 - $(A) \quad \text{orthogonal to} \quad \overset{\textstyle \longrightarrow}{OP}$
 - (B) normal to the level surface of r at P
 - (C) normal to the surface of revolution generated by OP about x-axis
 - (D) normal to the surface of revolution generated by OP about y-axis
- Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by 8.

$$T(x_1, x_2, x_3) = (x_1 - x_2, x_1 - x_2, 0)$$
.

If N(T) and R(T) denote the null space and the range space of T respectively, then

- (A) $\dim N(T) = 2$
- (B) $\dim R(T) = 2$
- (C) R(T) = N(T)
- (D) $N(T) \subset R(T)$
- 9. Let S be a closed surface for which $\iint \vec{r} \cdot \hat{n} d\sigma = 1$. Then the volume enclosed by the

surface is

- (A) 1
- (B) 1/3
- (C) 2/3
- (D) 3

10. If $(c_1 + c_2 \ln x)/x$ is the general solution of the differential equation

$$x^{2} \frac{d^{2}y}{dx^{2}} + kx \frac{dy}{dx} + y = 0, \quad x > 0,$$

then k equals

- (A) 3
- (B) -3
- (C)
- (D) -1

11. If A and B are 3×3 real matrices such that rank(AB)=1, then rank(BA) cannot be

- $(A) \quad 0$
- (B) 1
- (C) 2
- (D) 3

12. The differential equation representing the family of circles touching y-axis at the origin is

- (A) linear and of first order
- (B) linear and of second order
- (C) nonlinear and of first order
- (D) nonlinear and of second order

13. Let G be a group of order 7 and $\phi(x) = x^4$, $x \in G$. Then ϕ is

- (A) not one one
- (B) not onto
- (C) not a homomorphism
- (D) one one, onto and a homomorphism

14. Let R be the ring of all 2×2 matrices with integer entries. Which of the following subsets of R is an integral domain?

(A)
$$\left\{ \begin{pmatrix} 0 & x \\ y & 0 \end{pmatrix} : x, \ y \in \mathbf{Z} \right\}$$

(B)
$$\left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} : x, \ y \in \mathbf{Z} \right\}$$

(C)
$$\left\{ \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} : x \in \mathbf{Z} \right\}$$

(D)
$$\left\{ \begin{pmatrix} x & y \\ y & z \end{pmatrix} : x, \ y, \ z \in \mathbf{Z} \right\}$$

15. Let $f_n(x) = n \sin^{2n+1} x \cos x$. Then the value of

$$\lim_{n\to\infty}\int_{0}^{\pi/2}f_{n}(x)dx - \int_{0}^{\pi/2}\left(\lim_{n\to\infty}f_{n}(x)\right)dx$$

is

- (A) 1/2
- (B) 0
- (C) -1/2
- (D) $-\infty$
- 16. (a) Test the convergence of the series

$$\sum_{n=1}^{\infty} \frac{n^n}{n! \, 3^n} \tag{6}$$

(b) Show that

$$\ln\left(1+\cos x\right) \le \ln 2 - \frac{x^2}{4}$$
for $0 \le x \le \pi/2$. (9)

17. Find the critical points of the function

$$f(x, y) = x^3 + y^2 - 12x - 6y + 40.$$

Test each of these for maximum and minimum.

- 18. (a) Evaluate $\iint_R xe^{y^2} dx dy$, where *R* is the region bounded by the lines x = 0, y = 1 and the parabola $y = x^2$.
 - (b) Find the volume of the solid bounded above by the surface $z = 1 x^2 y^2$ and below by the plane z = 0. (9)
- 19. Evaluate the surface integral

$$\iint_{S} x \left(12y - y^4 + z^2\right) d\sigma ,$$

where the surface S is represented in the form $z = y^2$, $0 \le x \le 1$, $0 \le y \le 1$. (15)

- 20. Using the change of variables, evaluate $\iint_R xy \, dx \, dy$, where the region R is bounded by the curves xy = 1, xy = 3, y = 3x and y = 5x in the first quadrant. (15)
- 21. (a) Let u and v be the eigenvectors of A corresponding to the eigenvalues 1 and 3 respectively. Prove that u + v is not an eigenvector of A. (6)
 - (b) Let A and B be real matrices such that the sum of each row of A is 1 and the sum of each row of B is 2. Then show that 2 is an eigenvalue of AB. (9)

(15)

- 22. Suppose W_1 and W_2 are subspaces of $\overset{*}{\square}$ spanned by $\{(1,2,3,4),(2,1,1,2)\}$ and $\{(1,0,1,0),(3,0,1,0)\}$ respectively. Find a basis of $W_1 \cap W_2$. Also find a basis of $W_1 + W_2$ containing $\{(1,0,1,0),(3,0,1,0)\}$.
- 23. Determine y_0 such that the solution of the differential equation

$$y'-y=1-e^{-x}$$
, $y(0)=y_0$

has a finite limit as $x \to \infty$. (15)

- 24. Let $\phi(x, y, z) = e^x \sin y$. Evaluate the surface integral $\iint_S \frac{\partial \phi}{\partial n} d\sigma$, where *S* is the surface of the cube $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$ and $\frac{\partial \phi}{\partial n}$ is the directional derivative of ϕ in the direction of the unit outward normal to *S*. Verify the divergence theorem. (15)
- 25. Let y = f(x) be a twice continuously differentiable function on $(0, \infty)$ satisfying

$$f(1) = 1$$
 and $f'(x) = \frac{1}{2} f\left(\frac{1}{x}\right)$, $x > 0$.

Form the second order differential equation satisfied by y = f(x), and obtain its solution satisfying the given conditions. (15)

- 26. Let $G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbf{Z} \right\}$ be the group under matrix addition and H be the subgroup of G consisting of matrices with even entries. Find the order of the quotient group G/H.
- 27. Let

$$f(x) = \begin{cases} x^2 & 0 \le x \le 1\\ \sqrt{x} & x > 1. \end{cases}$$

Show that f is uniformly continuous on $[0, \infty)$. (15)

28. Find $M_n = \max_{x \ge 0} \left\{ \frac{x}{n(1+nx^3)} \right\}$, and hence prove that the series

$$\sum_{n=1}^{\infty} \frac{x}{n(1+nx^3)}$$

is uniformly convergent on $[0, \infty)$.

29. Let *R* be the ring of polynomials with real coefficients under polynomial addition and polynomial multiplication. Suppose

 $I = \{ p \in R : \text{ sum of the coefficients of } p \text{ is zero} \}.$

Prove that I is a maximal ideal of R. (15)

(15)