AM 110 Engineering Mechanics QUIZ 2

Date of Exam: $\mathbf{1 9}^{\text {th }}$ October 2007

Time:8:00-8:50am

1. This Question paper consists of two sections.
2. Section A consists of FIVE Multiple Choice Questions, which should be answered on the same sheet and submitted along with your answer script. You should specify the corresponding choice ONLY in the parentheses given against each question.
3. There are TWO questions in Section B, which should be answered in the answer script.
4. Make suitable assumptions if required and state them clearly.
5. Answer All questions.

SECTION A

FIVE Multiple Choice Questions attached in a separate sheet along with the answer script given.

$$
5 \times 1=5 \text { marks }
$$

SECTION B

Q(1) A board of length 3 m , weighing 200 N , is placed across the channel and a boy weighing 400 N , attempts to walk across (as shown in Figure 1). If the coefficient of static friction at A and B is $\mu_{S}=0.3$. Determine the distance \mathbf{d}, the boy can travel from A before the board slips.

Figure 1

Figure 2

Q(2) At the instant shown in Figure 2, rod AB has an angular velocity $\omega_{\mathrm{AB}}=3 \mathrm{rad} / \mathrm{s}$ and an angular acceleration $\alpha_{A B}=5 \mathrm{rad} / \mathrm{s}^{2}$. Determine the angular velocity and angular acceleration of the rod CD at this instant. The collar at C is pin connected to CD and slides over AB . Length of CD is 0.5 m .

AM 110 Engineering Mechanics

QUIZ 2 - SECTION A

NAME:
Roll No:

MCQ: Multiple Choice Questions

Q(1). In the context of Rigid body mechanics, which of the following statement is False. ()
ANS:
(A) If a particle, moves along a curved path with constant speed, the tangential acceleration is zero.
(B) Instantaneous centre of rotation can be used to determine both velocity and acceleration of a rigid body.
(C) When we perform relative motion analysis using rotating axes, we need to include Coriolis acceleration term.
(D) For a bicycle wheel, which rotates without slipping, the instantaneous centre of rotation is located at the point of contact with the road.

Q (2). The rim of a wheel has the top point at B and is in contact with the floor at C Due to slipping the points at C and B have velocities as $V_{C}=2 \mathrm{~m} / \mathrm{sec} \mathrm{V}_{\mathrm{B}}=8 \mathrm{~m} / \mathrm{sec}$ as shown in Figure.3. Radius of the wheel is 0.5 m . What is the velocity of the point D (which is on the rim of the wheel) at this instant ?

Figure 3

Figure 4
ANS: (A) $3 \mathrm{~m} / \mathrm{sec}$
(B) $5 \mathrm{~m} / \mathrm{sec}$
(C) $10 \mathrm{~m} / \mathrm{sec}(\mathrm{D}) 5.83 \mathrm{~m} / \mathrm{sec}$

Q (3). The collar bearing uniformly supports an axial force $P=2 \mathrm{kN}$ and $\mathrm{M}=4 \mathrm{~N} . \mathrm{m}$ is applied to the shaft as shown in Figure 4. Determine the coefficient of kinetic friction $\left(\mu_{k}\right)$ at the point of contact.
ANS: (A) 0.3
(B) 0.126
(C) 0.063
(D) 0.0315

AM 110 Engineering Mechanics

QUIZ 2 - SECTION A

Q (4). Given the Lagrangian function for a particular problem as

$$
L=M \dot{x}^{2}+m\left(\dot{x}^{2}+2 \dot{x} x+x^{2}\right)
$$

One of the following represents the correct equation of motion for the Dynamical system.

ANS:
(A) $\ddot{x}=\frac{m}{(m+M)} \dot{x}$
(B) $\ddot{x}=-\frac{m}{(m+M)} \dot{x}$
(C) $\ddot{x}=\frac{m}{(m+M)} x$
(D) $\ddot{x}=-\frac{m}{(m+M)} x$

Q (5). An ant falls into a spherical bowl as shown in Figure 5. If the ant tries to crawl out of the bowl, what will be its status. Given the coefficient of static friction between the insect and the bowl is, $\mu_{\mathrm{S}}=0.4$.

Figure 5

ANS: (A) Insufficient data. Weight of the ant is not given.
(B) Ant can always crawl out of a bowl.
(C) It can not crawl out of the bowl.
(D) Coefficient of static friction is completely irrelevant for ants.

THE END

