# MCA (Sem.-1 ${ }^{\text {st }}$ ) <br> COMPUTER MATHEMATICAL FOUNDATION SUBJECT CODE :MCA - 104 (N2) <br> Paper ID : [B0104] <br> [Note: Please fill subject code and paper ID on OMR] 

Time : 03 Hours
Maximum Marks : 60

## Instruction to Candidates:

1) Attempt any one question from each Sections $A, B, C \& D$.
2) Section-E is Compulsory.
3) Use of non-programmable Scientific Calculator is allowed.

## Section-A

$$
(1 \times 10=10)
$$

Q1) Show that set of real numbers in [ 0,1$]$ is uncountable set.
Q2) Let R be a relation on A. Prove that
(a) If R is reflexive, so is $\mathrm{R}^{-1}$.
(b) $R$ is symmetric if and only if $R=R^{-1}$.
(c) $R$ is antisymmetric if and only if $R \cap R^{-1} \subseteq I_{A}$.

Section - B

$$
(1 \times 10=10)
$$

Q3) If $x$ and $y$ denote any pair of real numbers for which $0<x<y$, prove by mathematical induction $0<x^{n}<y^{n}$ for all natural numbers $n$.

Q4) (a) Obtain disjunctive normal forms for the following
(i) $\mathrm{p} \wedge(\mathrm{p} \Rightarrow \mathrm{q})$.
(ii) $\mathrm{p} \Rightarrow(\mathrm{p} \Rightarrow \mathrm{q})[\vee \sim(\sim \mathrm{q} \vee \sim \mathrm{p})]$.
(b) Define biconditional statement and tautologies with example.

Section - C

$$
(1 \times 10=10)
$$

Q5) Find the ranks of $\mathrm{A}, \mathrm{B}$ and $\mathrm{A}+\mathrm{B}$, where

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & -3 & 4 \\
3 & -2 & 3
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
-1 & -2 & -1 \\
6 & 12 & 6 \\
5 & 10 & 5
\end{array}\right]
$$

ntt：／1／nww．hooloexam．com Solve the following equations by Gauss－Jordan method． $2 x-y+3 z=9$ ，
， $x+y+z=6, x-y+z=2$ ．

## Section－D

$$
(1 \times 10=10)
$$

Q7）（a）Show that the degree of a vertex of a simple graph $G$ on＇$n$＇vertices can not exceed $n-1$ ．
（b）A simple graph with＇ n ＇vertices and k components cannot have more than $\frac{(n-k)(n-k+1)}{2}$ edges．

Q8）Define breadth first search algorithm（BFS）and back tracking algorithm for shortest path with example．

Section－E
$(10 \times 2=20)$
Q9）a）Draw the truth table for $\sim(p \vee q) \vee(\sim p \wedge \sim q)$ ．
b）Define principle of mathematical induction．
c）Prove that $\mathrm{A}-\mathrm{B}=\mathrm{A} \cap \mathrm{B}^{\prime}$ ．
d）Using Venn diagram show that $A \Delta(B-\Delta C)=(A \Delta B) \Delta C$ ．
e）If $A$ and $B$ are two $m \times n$ matrices and 0 is the null matrix of the type $\mathrm{m} \times \mathrm{n}$ ，show that $\mathrm{A}+\mathrm{B}=0$ implies $\mathrm{A}=-\mathrm{B}$ and $\mathrm{B}=-\mathrm{A}$ ．
f）If $A$ and $B$ are two equivalent matrices，then show that $\operatorname{rank} A=\operatorname{rank} B$ ．
g）Prove that every invertible matrix posseses a unique inverse．
h）Draw the graphs of the chemical molecules of
i）Methane $\left(\mathrm{CH}_{4}\right)$ ．
ii）Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ ．
i）Draw the digraph G corresponding to adjacency matrix

$$
A=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

j）Give an example of a graph that has an Eulerian circuit and also Hamiltonian circuit．

