http://www.howtoexam.com

Total No. of Questions : 09]

[Total No. of Pages : 02

MCA (Sem.-1st) COMPUTER MATHEMATICAL FOUNDATION <u>SUBJECT CODE</u> :MCA - 104 (N2) <u>Paper ID</u> : [B0104]

[Note : Please fill subject code and paper ID on OMR]

Time : 03 Hours

Maximum Marks: 60

Instruction to Candidates:

- 1) Attempt any one question from each Sections A, B, C & D.
- 2) Section-E is Compulsory.
- 3) Use of non-programmable Scientific Calculator is allowed.

Section - A

 $(1 \times 10 = 10)$

and memory and the store

Q1) Show that set of real numbers in [0, 1] is uncountable set.

- Q2) Let R be a relation on A. Prove that
 - (a) If R is reflexive, so is R^{-1} .
 - (b) R is symmetric if and only if $R = R^{-1}$.
 - (c) R is antisymmetric if and only if $R \cap R^{-1} \subseteq I_A$.

Section - B

 $(1 \times 10 = 10)$

- Q3) If x and y denote any pair of real numbers for which 0 < x < y, prove by mathematical induction $0 < x^n < y^n$ for all natural numbers n.
- Q4) (a) Obtain disjunctive normal forms for the following
 - (i) $p \land (p \Rightarrow q)$.
 - (ii) $p \Rightarrow (p \Rightarrow q) [\lor \sim (\sim q \lor \sim p)].$
 - (b) Define biconditional statement and tautologies with example.

Section - C

 $(1 \times 10 = 10)$

Q5) Find the ranks of A, B and A + B, where

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 & -2 & -1 \\ 6 & 12 & 6 \\ 5 & 10 & 5 \end{bmatrix}$$

Download school board exam papers and there answers from How To Exam

P.T.O.

(26) Solve the following equations by Gauss-Jordan method. 2x - y + 3z = 9, x + y + z = 6, x - y + z = 2.

Section - D

 $(1 \times 10 = 10)$

- Q7) (a) Show that the degree of a vertex of a simple graph G on 'n' vertices can not exceed n-1.
 - (b) A simple graph with 'n' vertices and k components cannot have more than $\frac{(n-k)(n-k+1)}{2}$ edges.

 $(10 \times 2 = 20)$

- **Q9)** a) Draw the truth table for $\sim (p \lor q) \lor (\sim p \land \sim q)$.
 - b) Define principle of mathematical induction.
 - c) Prove that $A B = A \cap B'$.
 - d) Using Venn diagram show that $A \Delta (B \Delta C) = (A \Delta B) \Delta C$.
 - e) If A and B are two m \times n matrices and 0 is the null matrix of the type m \times n, show that A + B = 0 implies A = -B and B = -A.
 - f) If A and B are two equivalent matrices, then show that rank A = rank B.
 - g) Prove that every invertible matrix posseses a unique inverse.
 - h) Draw the graphs of the chemical molecules of
 - i) Methane (CH₄).
 - ii) Propane (C_3H_8) .
 - i) Draw the digraph G corresponding to adjacency matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

 Give an example of a graph that has an Eulerian circuit and also Hamiltonian circuit.

adiotust has imaginated lands white and have