

INDIAN INSTITUTE OF SCIENCE BANGALORE - 560012

ENTRANCE TEST FOR ADMISSIONS - 2010

Program : Research

Entrance Paper : Chemistry

Paper Code : CY

Day & Date SUNDAY, 25[™] APRIL 201*0*

Time 9.00 A.M. TO 12.00 NOON

INSTRUCTIONS

- 1. This question paper consists of only multiple-choice questions. All questions carry one mark each.
- 2. Answers are to be marked in the OMR sheet provided.
- 3. For each question, darken the appropriate bubble to indicate your answer.
- 4. Use only HB pencils for darkening the bubble.
- 5. Mark only one bubble per question. If you mark more than one bubble, the answer will be evaluated as incorrect.
- 6. If you wish to change your answer, please erase the existing mark completely before marking the other bubble.
- 7. There will be NEGATIVE marking. NEGATIVE marking for each wrong answer will be 1/3.
- 8. A periodic table is given at the end.
- 9. Some useful physical constants:

(Ά	١	Ĭπ	iversal	gas	constant
1	_	, ,	711	TACTOUR	. yas	Constant

- (B) Planck's constant,
- (C) Acceleration due to gravity
- (D) Speed of light in vacuum
- (E) Avogadro's number
- (F) Boltzmann constant
- (G)Electron charge
- (H) Electron mass
- (I) Permittivity of the vacuum
- (J) Faraday constant
- (K) 1 Calorie
- (L) 1 atm
- (M) I eV

$$R = 8.31451 \text{ J mol}^{-1} \text{ K}^{-1}$$

0.08206 L atm mol⁻¹ K⁻¹

 $h = 6.626 \times 10^{-34} \text{ J.s}$

 $g = 9.8 \,\mathrm{m \, s^{-2}}$

 $c = 2.998 \times 10^8 \,\mathrm{m \, s^{-1}}$

 $N = 6.023 \times 10^{23} \, \text{mol}^{-1}$

 $k = 1.380 \times 10^{-23} \,\mathrm{J \, K^{-1}}$

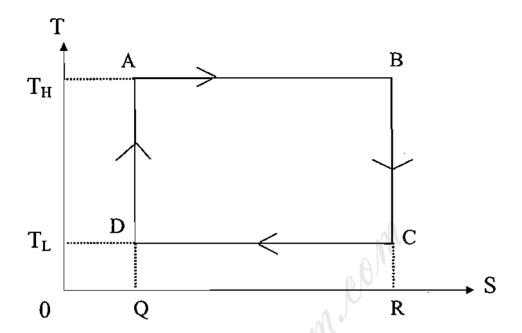
 $e = 1.602 \times 10^{-19} C$

 $m_e = 9.109 \times 10^{-31} \, \text{Kg}$

 $\varepsilon_0 = 8.854 \times 10^{-12} \text{ F m}^{-1}$

 $F = 9.65 \times 10^4 \, \text{C mol}^{-1}$

= 4.184 J


= 760 Torr

 $= 1.6022 \times 10^{-19} J$

CHEMISTRY

- 1. Temperature dependence of the rate constant for a reaction obeys the Arrhenius equation: $k = A \times e^{\left(\frac{-E_e}{RT}\right)}$. According to this equation, as T approaches infinity, k will approach:
 - (A)A
 - (B) infinity
 - (C)1
 - (D)0
- 2. Among the following molecules, the one that is NOT infrared active is:
 - (A) C₂H₂, acetylene
 - (B) CH₄, methane
 - (C) N₂, nitrogen molecule
 - (D) CO2, carbon dioxide
- 3. The molar entropy of a molecule that can have three distinct orientations at absolute zero is approximately:
 - $(A) 9.13 \text{ J K}^{-1}$
 - (B) 5.76 J K⁻¹
 - (C) 24.9 J K^{-1}
 - (D) 3.96 J K⁻¹
- 4. For the reaction of oxygen in equilibrium with ozone: $3O_2$ (g) \leftrightarrow $2O_3$ (g), the number of intensive variables to be specified to describe the state of the system, is:
 - (A) 1
 - (B) 2
 - (C) 3
 - (D)4
- 5. The atomic term symbol for the helium atom in its ground state is
 - $(A)^3S_1$
 - (B) ${}^{3}P_{2}$
 - $(C)^3S_0$
 - (D) 1S₀

6. The operation of a Carnot engine between a high temperature T_H and a low temperature T_L is shown next in terms of temperature T and entropy S of some working fluid.

Among the following statements about this figure, the one that is NOT TRUE is:

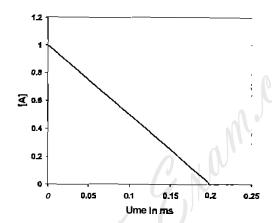
- (A) The network done by the system is the area ABRQ DCRQ.
- (B) The step $C \rightarrow D$ corresponds to an isothermal expansion of the working fluid.
- (C) The heat deposited by the system in the thermal reservoir at T_L is the area DCRQ.
- (D) Both the steps $D \rightarrow A$ and $B \rightarrow C$ describe adiabatic processes.
- 7. Among the following forms of carbon, the thermodynamically most stable one is:
 - (A) Carbon nanotube
 - (B) Fullerene
 - (C) Diamond
 - (D) Graphite

(.	Α	(1	9	8	1	
v			•	-	_	-	

(B) 3988 J

(C) 991 J

- (D)7282 J
- 9. The total degeneracy for a d¹ ion in spherical symmetry ic:
 - (A)2
 - (B) 3
 - (C) 5
 - (D) 10
- 10. A molecule has two C, axes perpendicular to each other. Hence,
 - (A) the molecule would have a non-zero dipole moment which may point either along one of the two axes.
 - (B) the molecule would have a non-zero dipole moment, which would point in the direction raidway between the two axes, i.e. making an angle of 45° to each axis.
 - (C) the molecule has a non-zero dipole that would point in a direction perpendicular to the two axes.
 - (D) the molecule would have zero dipole moment.
- 11. Twenty four grams af zinc metal is dissolved in 1M HCl solution. The charge produced by the oxidation process is:
 - (A) 96500 Coulombs
 - **(B) 70836** Coulombs
 - (C) 48250 Coulombs
 - (D) 35418 Coulornbs
- 12. The pH of 80 % ionised 0.01N acid solution is:
 - (A)2.0969
 - (B) 0.2096
 - (C) 20.09
 - (D) 0.0269


13. Given the standard cell potentials as below:

$$AgCl + e = Ag + Cl$$
, $E^{\circ} = 0.2223 \text{ V}$
 $Ag^{+} + e = Ag$, $E^{\circ} = 0.799 \text{ V}$

The solubility product for the reaction; $AgCl = Ag^+ + Cl^-$ is:

- $(A) 2.80 \times 10^{-10}$
- (B) 0.80×10^{-10}
- (C) 28.0×10^{-10} (D) 1.80×10^{-10}

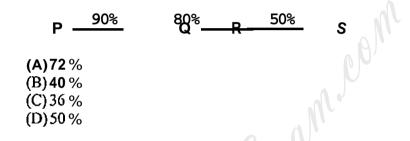
14. Concentration of the reagent A, [A], varies with time according to the graph shown next:

The order of the reaction is:

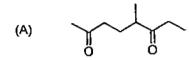
- (A) not defined
- (B)1
- (C)2
- (D)0

15. The point group symmetry for the molecule NH₃ is:

- $(A)D_{3h}$
- $(B) C_3$
- $(C) C_{3v}$
- $(D)C_{3h}$


- 16. Among the following statements, the one that is NOT true for a catalyzed reaction is:
 - (A) The concenaation of the catalyst does not enter in to the expression for equilibrium.
 - (B) The enthalpy of reaction does not change in the presence of a catalyst.
 - (C) The activation energy does not change in the presence of a catalyst.
 - (D) Without the catalyst, the reaction can still proceed.
- 17. For the reaction: $2 \text{ NH}_3(g) \rightarrow 3 \text{ H}_2(g) + \text{N}_2(g)$, $\Delta \text{H}^0 = 92.22 \text{ kJ mol}^{-1}$ and $\Delta \text{S}^0 = 198.75 \text{ J K}^{-1} \text{ mol}^{-1}$. With all reactants and products in their standard stare, this reaction will be spontaneous at:
 - (A) temperatures below 464 K
 - (B) temperatures above 464 K
 - (C) no temperature.
 - (D) all temperatures.
- 18. Among the following groups of metals, the one having the lowest melting points is:
 - (A) alkaline earth
 - (B) transition
 - (C) alkali
 - (D)lanthanide
- 19. The composition of a sample of iron oxide is $Fe_{0.93}O$. The percentage of Fe in the +3 oxidation state in this sample is approximately:
 - (A) 0.07 %
 - (B) 7.0%
 - (C) 30.0%
 - (D) 15.1 %
- 20. For the reaction $2P + 3B_{T_2} \rightarrow 2PB_{T_3}$, the heat evolved is -243 kJ (AH). Hence, the enthalpy change when 2.63 g of P reacts with an excess of B_{T_2} will be:
 - (A) 10.3 kJ
 - (B) 24.3 kJ
 - (C)1.03 kJ
 - (D) 20.6 kJ

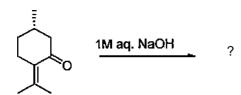
- 21. The product of the reaction of anisole with sodamide is:
 - (A) m-anisidine
 - (B) p-anisidine
 - (C) 1,2-diaminobenzene
 - (D) 1,3-diaminobenzene
- 22. The major product in the following reaction is:

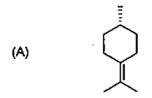

- 23. Number of signals expected in proton decoupled ¹³C NMR spectrum of 1,4-dihydroxynaphthalene and 1,8-dihydroxynaphthalene are:
 - (A) 5 and 5
 - (B) 5 and 6
 - (C) 5 and 10
 - (D) 10 and 6

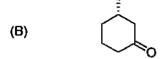
24. The reagents that can effect the following conversion are:

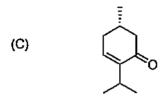
- (A) (i) CrO₃, (ii) methyl acrylate, (iii) H₂O/H⁺
- (B) (i) O₂, (ii) methyl acrylate
- (C) (i) CrO₃ (ii) pyrrolidine (iii) methyl acrylate, (iv) H₂O/H⁺
- (D) (i)H₂O₂, (ii) methyl acrylate,
- 25. In the multi-step synthesis given below, the overall yield for the formation of S from P is:

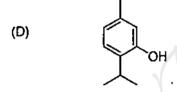
26. Among the following molecules, the one that yields 2,3,6-trimethylcyclohex-2-enone on treatment with dil. KOH is:

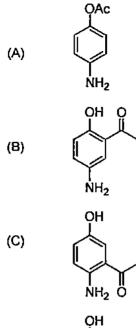



- (B)
- (c)
- (D)
- 27. On heating, 1,3-butadiene reacts with elemental sulfur to yield:
 - (A)thiophene
 - (B) 2,5-dihydrothiophene
 - (C)2,3-dihydrothiophene
 - (D) tetrahydrothiophene


28. The major product in the following reaction is:


- 29. The reagent of choice for the selective reduction of ketones in presence of an ester is:
 - (A) lithium aluminium hydride
 - (B) sodium hydride
 - (C) hydrogen and palladium on carbon
 - (D) sodium borohydride


30. The major product obtained in the following reaction is:



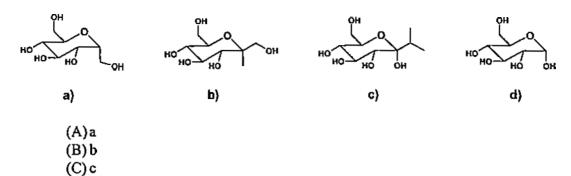
31. The biogenetic precursor for cholesterol is:

- (A) mevalonic acid
- (B) cyclopentaphenanthrene
- (C) acetyl CoA
- (D) fatty acid

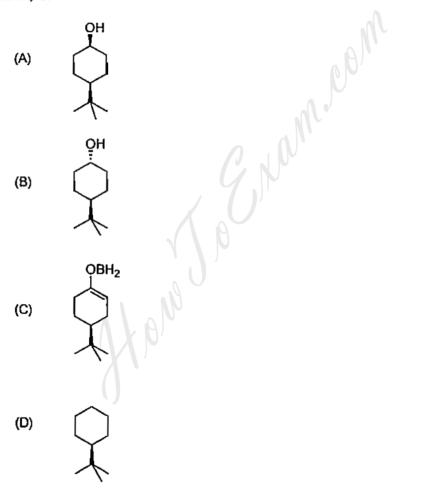
32. Reaction of 4-aminophenol with one equivalent of acetylchloride in the presence of pyridine yields:

- (D) OH NHAc
- 33. An organic compound of molecular formula C_4H_8 exhibits only a singlet at δ 1.9 ppm with reference to tetramethylsilane in ¹H NMR spectrum. The compound is:
 - (A) 1-butene
 - (B) cis-2-butene
 - (C) cyclobutane
 - (D)trans-2-butene

34. Reaction of D-glucose with benzaldehyde in presence of acid yields:


35. The IUPAC name for the following molecule is:

- (A) (2E,4Z)-3,4-dibromo hepta-2,4-diene
- (B) (2Z,4E)-3,4-dibromo hepta-2,4-diene
- (C) (2Z,4Z)-3,4-dibromo hepta-2,4-diene
- (D)(2E,4E)-3,4-dibromo hepta-2,4-diene


36. The product formed in the following reaction is:

- (A) OH
- (B) OH
- (C)
- (D)
- 37. Among the following aldehydes, the one that does NOT undergo Cannizzaro reaction is:
 - (A) formaldehyde
 - (B) acetaldehyde
 - (C) benzaldehyde
 - (D) pivalaldehyde (trimethylacetaldehyde)
- 38. R-2-octyl tosylate is solvolyzed in 80% aqueous acetone under ideal S_N1 conditions. The product(s) will be:
 - (A) R-2-octanol and S-2-octanol in a 1:1 ratio
 - (B) R-2-octanol and S-2-octanol in a 2:1 ratio
 - (C) R-2-octanol only
 - (D)S-2-octanol only

39. Among the following molecules, the conformation is stabilized only by anomenc effect for:

40. Major product obtained in the reduction of 4-tert-butyl cyclohexanone with NaBH4 is:

(D) d

41. The product obtained in the following conversion is:

$$\Delta$$
 ?

- 42. For the preparation of 1 litre each of 1 M NaOH and 1 M KOH solutions, the quantities of NaOH and KOH required are, respectively:
 - (A) 40 gand 47.6 g
 - (B) $40 \, g$ and $56 \, g$
 - (C) 20 g and 56 g
 - (D) 40 g and 28 g
- 43. Zinc selenide crystallizes in zincblende structure. The numbers of atoms of Zn and Se present in its unit cell are:
 - (A)8
 - (B) 6
 - (C) 4
 - (D) 12
- 44. The role of Br₂ in the reaction $H_2O + Br_2 \rightarrow HOBr + HBr$ is:
 - (A)reducing agent
 - **(B)** oxidizing **agent**
 - (C)neither oxidizing nor reducing agent
 - (D) both oxidizing and reducing agents

45. Among the following complexes, the one ihat undergoes Z_{in} distortion is:

```
(A)[Ni(CO)<sub>4</sub>]
(B)[CuCl<sub>4</sub>]<sup>2-</sup>
(C)[Cr(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup>
(D)[Cu(NH<sub>3</sub>)<sub>6</sub>]<sup>2</sup>
```

46. The ground state for the V³⁺ion in a tetrahedral environment is:

```
(A) <sup>3</sup>T<sub>1</sub>
(B) <sup>3</sup>T<sub>2</sub>
(C) <sup>3</sup>A<sub>2</sub>
(D) <sup>3</sup>E
```

47. Treatment of Mo(CO)₆ with Na⁺C₅H₅⁻ results in:

```
(A) Na[Mo(\eta^1-C<sub>5</sub>H<sub>5</sub>)(CO)<sub>4</sub>] + 2C0

(B) Na[Mo(\eta^5-C<sub>5</sub>H<sub>5</sub>)(CO)<sub>3</sub>] + 3C0

(C) Na[Mo(\eta^3-C<sub>5</sub>H<sub>5</sub>)(CO)<sub>2</sub>] + 4C0

(D)Na[Mo(\eta^5-C<sub>5</sub>H<sub>5</sub>)(CO)] + 5C0
```

48. The reaction:

```
[Ir(H)_2Cl(CO)(PPh_3)_2] \rightleftharpoons [IrCl(CO)(PPh_3)_2] + H_2 is an example for:
```

- (A) oxidative addition
- (B) substitution
- (C) insertion
- (D)reductive elimination

49. The smallest cation among Na⁺, Mg²⁺, Al³⁺, Si⁴⁺ is:

- (A)Mg²¹
- (B) Na⁺
- (C) Al³⁺
- (D) Si4+

50. The two main isotopes of poiassium are ³⁹K and ⁴¹K. The atomic mass of potassium may be used as 39.1. The abundances of the isotopes are:

```
(A) 95% <sup>39</sup>K and 5% <sup>41</sup>K
(B) 90% <sup>39</sup>K and 10% <sup>41</sup>K
(C) 5% <sup>39</sup>K and 95% <sup>41</sup>K
(D) 10% <sup>39</sup>K and 90% <sup>41</sup>K
```

51. The metal ions tha	t have the highest mobility	y in biological media are:

- (A) Zn(II) and Ni(II)
- (3)Fe(II) and Cu(II)
- (C) Na(I) and K(I)
- (D)Mg(II) and Ca(II)

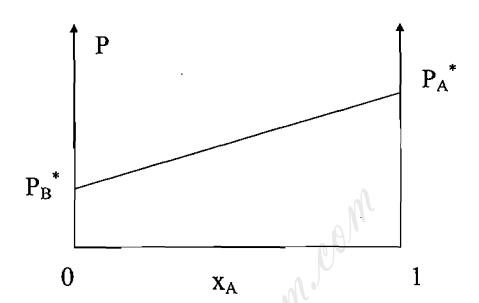
52. Hemerythrin belongs to the group of:

- (A) non-herne iron protein
- (B) binuclear copper protein
- (C)herne-iron protein
- (D) non-heme non-iron protein

53. Among the following bonds, the least stable one is:

- (A) S-S
- (B)C=C
- (C)P-P
- (D)S=S
- 54. The number of isomers possible for octahedral [CrCl₂(H₂O)₄]⁺ and octahedral [CoCl₂(en)₂]⁺ are, respectively,:
 - (A) two and two
 - (B) three and three
 - (C) two and three
 - (D) three and two

55. The cis-platin is:

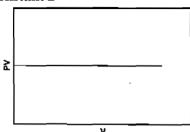

- (A)diamagnetic.
- (B) paramagnetic.
- (C) ferromagnetic.
- (D) anti-ferromagnetic.
- 56. Among the following organometallic compounds, the one that follows the 18electron rule is:
 - (A) [Ni(η^5 -C₅H₅)₂] (B) [Ru(η^6 -C₆H₆)₂]

 - (C) [Cr(η^6 -C₆H₆)₂]
 - (D) $[C_0(\eta^5 C_5H_5)_2]$

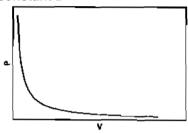
57. Among the following oxides, the one having a normal spinel structure is:
(A)CuO
(B) Co ₃ O ₄
(C) Fe ₃ O ₄
(D)TiO ₂
58. Armong the following complexes, the one having a metal-metal quadruple bond is:
(A)[Re ₂ Cl ₈] ⁴⁻
(B) [Cu ₂ (OAc) ₄]
(C) [Mo2(OR)6] $(D) [Ru C(OA)]$
(D)[Ru ₂ Cl(OAc) ₄]
59. Among the following complexes, the one that is expected to show three d - d bands in the electronic spectrum is:
$(A) [Mn(H_2O)_6]^{2+}$
(B) [FeCL]
(B) $\{FeCl_4\}^-$ (C) $[Ti(H_2O)_6]^{3+}$ (D) $[Ni(H_2O)_6]^{2+}$
(C)[11(112O)6]
60. One hundred gram of CaCO ₃ contains (N is the Avogadro's number):
(A)50N protons
(B) N protons
(C) 5N protons
(D) 25N protons
(S) = 1. protons
61. Among the following pairs of ions/molecules, the one having similar shapes is:
(A)CO ₂ and H ₂ O
(B) BF_3 and H_3C^{\dagger}
(C) CCl ₄ and PtCl ₄
(D) NH ₃ and BF ₃
62. The number of orbitals present in the $n = 4$ atomic shell is:
(A) 64
(B) 32
(C) 16
(D) 8
20

- 63. There are two containers having two moles of Ar each at a temperature of 298 K and a pressure of 1 bar. Both are heated such that they gain 1 KJ of energy each. First container was heated at constant V and the second container was heated at constant P. The final temperatures in the two containers will respectively be:
 - (A) 298 K and 350 K
 - (B) 350 K and 400 K
 - (C) 338 K and 322 K
 - (D) 350 K and 350 K
- 64. The molecular weight of an ideal gas having a density of 1.5 g L⁻¹ at 100 °C and 600 Toπ is:
 - (A)45.9 g/mol
 - (B) 4.59 g/mol
 - (C) 5.82 g/mol
 - (D)58.2 g/mol
- 65. According to ideal gas law,:
 - (A) molecules have neither attraction between them nor have any finite size, being treated as a point mass.
 - (B) molecules do have attraction between them but do not have any finite size, being treated as a point mass.
 - (C)molecules have no attraction between them but do have a finite size.
 - (D) molecules have both attraction between them and have a finite size.
- 66. For the gas phase reaction: $CO + NO_2 \rightarrow CO_2 + NO$, the activation energy is found to be 116 kJ mol⁻¹. The enthalpy of formation for CO, NO₂, CO₂ and NO are −110, 33, -394 and 90 kJ mol⁻¹, respectively. The activation energy (in kJ mol⁻¹) for the reverse reaction is:
 - (A)343
 - (B) 227
 - (C) 227
 - (D)116
- 67. Factors affecting the average kinetic energy of gas rnolecules are:
 - (A) pressure only
 - (B) temperature only
 - (C) both temperature and pressure
 - (D) neither temperature nor pressure

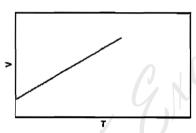
68. The figure below shows the dependence at some fixed temperature T of the total vapour pressure P of a mixture of two volatile liquids A and B on the mole fraction x_A of component A, with P_A the vapour pressure of pure A and P_B the vapour pressure of pure B.

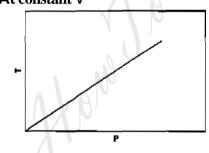


Among the following statement about this figure, the one that is NOT TRUE is:


- (A) The mixture is ideal.
- (B) In the region above the line P_B*P_A*, the liquid phase of the mixture is the stable phase.
- (C) Along the line P_B*P_A*, the liquid and vapour phases of the mixture are in equilibrium.
- (D) The vapour pressure of component B, P_B , is given by the relation $P_B = P_A^{\bullet}(1-x_A)$.
- 69. The enthalpy of fusion of H_2O at 0 °C is 1.436 kcal mol⁻¹. The AS for the process $H_2O(1) \Leftrightarrow H_2O(s)$ at 0 °C is:
 - (A)52.6 cal mol⁻¹ K⁻¹
 - (B) -5.26 cal mol K-1
 - (C) 5.26 cal mol K'
 - (D)-52.6 cal mol⁻¹ K⁻¹

70. Among the following graphs, the one that does not correspond to ideal gas behaviour is: (P = pressure, V = volume, T = temperature in K):


(A) At constant T


(B) At constant T

(C) At constant P

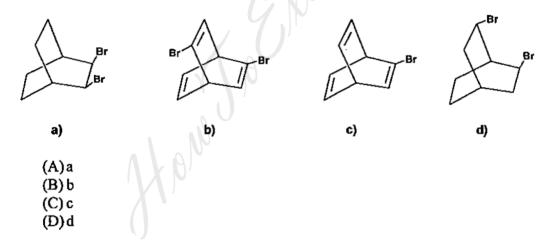
(D) At constant V

71. A particle is confined to a one dimensional box of length 2a extending from along the x-axis. The average value of position and momentum, for the particle, if it is sitting in the lowest possible state is:

(A)
$$\langle x \rangle = 0$$
 and $\langle p_x \rangle = 0$

(B)
$$(x)=a/2$$
 and $\langle p_x \rangle = 0$

(C)
$$\langle x \rangle = 0$$
 and $\langle p_x \rangle = -i\eta$


(D)
$$\langle x \rangle = 0$$
 and $\langle p_x \rangle = \eta$

- 72. In the following N denotes a suitable constant that one may choose as desired. Of the following the functions, the only function that is NOT an acceptable wave function for an electron in the Hydrogen atom is:
 - (A) $N \exp(-r)$
 - (B) $N \exp(r)$
 - (C) $Nr \exp(-r) \exp(i\phi)$
 - (D) $Nr \exp(-r^2) \exp(i\phi)$
- 73. In the electromagnetic spectrum, the wavenumber decreases in the order:
 - (A) X-ray > rnicrowave > infra-red > ultra-violet
 - (B) X-ray > rnicrowave > ultra-violet > infra-red
 - (C) X-ray > ultra-violet > infra-red > microwave
 - (D) rnicrowave > infra-red > ultra-violet > X-ray
- 74. The number of electrons (per second) that pass ihrough a cross section of copper wire carrying a current of 10-9 A is:
 - $(A)62.5 \times 10^{10} \text{ e/s}$
 - (B) 120 e/s

 - (C) 12000 e/s (D) 0.625 x 10¹⁰ e/s

75. The major product in the following reaction is:

76. Among the following molecules, the one that is chiral is:

77. The major product in the following reaction is:

- (A) O CH₂OH
- (B) HO CH₂OH
- (C) OCHO
- (D) HO CO₂H

78. Arrange the following in the increasing order of acidity:

- (i) Benzoic acid (ii) p-Methoxy benzoic acid (iii) p-Methyl benzoic acid
 - $(A)(i) \le (ii) \le (iii)$
 - (B)(iii) < (ii) < (i)
 - (C)(ii) < (iii) < (i)
 - (D)(ii) < (i) < (iii)

79. A compound with molecular formula $C_9H_{12}O_3$ exhibited two singlets at δ 6.7 and δ 3.8 in ¹H NMR spectrum in 1.3 ratios. The structure of the compound is:

80. The number of diastercomers possible for the following compound is:

- (A)4
- (B)3
- (C) 2
- (D) 1

81. The product formed in the following reaction is:

- (A) Me OCD₃
- (B) CD₃ OCD₃
- (C) CD₃ OMe
- (D) CD₃ OMe
- 82. Among the following molecules, the one that will NOT undergo a Diels-Alder reaction is:
 - (A) ethylene
 - (B) 2-butene
 - (C) maleic anhydride
 - (D) succinic anhydride

83. The generic names for the following molecules are, respectively:

- (A) crown ether, cryptand, calixarene, and hemispherand.
- (B) cryptand, calixarene, crown ether and hemispherand.
- (C) crown ether, hemispherand, cryptand, and calixarene.
- (D) crown ether, calixarene, cryptand, and hemispherand.

84. The major product in the reaction of rnethyl acrylate and benzylamine under ambient conditions is:

- (D) Poly-(N-benzylacrylamide)
- 85. The major product of the reaction of 2-chlorocyclohexanone with NaOMe is:

- 86. Among the following compounds the one that readily undergoes decarboxylation upon heating is:
 - (A) COOH
 - (B) HOOC
 - (C) COOH
 - (D) COOH
- 87. In the mass spectrum of CH₂Cl₂, the ratio of peaks at mass values 84, 86 and 88 will respectively be:
 - (A)3:1:1
 - (B) 3:2:1
 - (C)4:2:1
 - (D)9:6:1
- 88. The enthalpy change, AH, for the following process are given in kJ/mol: sublimation of K(s) = +89, ionization of K(g) = +425; dissociation of $Cl_2(g) = +244$, electron gain by Cl(g) = -355, formation of KCl(s) = 438. Using a Born-Haber cycle, the lattice enthalpy of KCl(s) is calculated to be:
 - (A)719
 - (B) 0
 - (C)-719
 - (D) 1438
- 89. The absorption maximum of a given sample of cadmium sulfide is 470 nm. The approximate band gap is:
 - (A) 200 kJ mol⁻¹
 - (B) 250 kJ mol⁻¹
 - (C) 100 kJ mol⁻¹
 - (D) 150 kJ mol⁻¹

90. For a 6p sub-shell, the most positive value that m_l can have is:
(A)+1
(B) +6
(C) +3
(D)+7
91. PhMgBr reacts with methanol to give:
(A) a mixture of anisole and Mg(OH)Br
(B) a rnixture of toluene and Mg(OH)Br
(C) a mixture of phenol and McMgBr
(D)a mixture of benzene and Mg(OMe)Br
92. $C_2B_{n-2}H_n$ is an isoelectronic analogue of:
$(A)B_nH_n$
(B) $B_n H_n^{-1}$ (C) $B_n H_n^{-3}$ (D) $B_n H_n^{-2}$
$(C) B_n H_n^{3}$
$(D)B_nH_n^2$
93. The point group symmetry of cis-[Co(NH ₃) ₄ Cl ₂] ⁺ is:
(A) C _{2v}
(B) Oh
(C) D_{2h}
(D) C _{4v}
94. The electron transfer reaction between [Co(NH ₃) ₅ Cl] ²⁺ and [Cr(H ₂ O) ₆] ²⁺ in acidic medium leads to the formation of a chromium species of formulation:
(A)[Cr(NH ₁) ₅ (H ₂ O)] ²⁺
(A) $[Cr(NH_3)_5(H_2O)]^{2+}$ (B) $[Cr(NH_3)_5Cl]^{2+}$
$(C)[Cr(H_2O)_5Cl]^{2+}$
(C) $[Cr(H_2O)_5Cl]^{2+}$ (D) $[Cr(NH_3)_6]^{3+}$
95. Among the following molecules, the one that is polar is:
(A)CH ₄
(B) BF ₃
(C) SF ₆
$(D)NH_3$

96. The VSEPR model is based on the:

- (A) number of bonded pairs of electrons around the central atorn.
- (B) number of bonded and lone pairs of electrons around the central atom.
- (C) number of lone pairs of electrons around the central atom.
- (D) number of protons around the central atorn.
- 97. According to Irving-William series, Cu(II) is more stable than Ni(II) because of:
 - (A) Jahn-Teller distortion
 - (B) higher trans effect
 - (C) complexation with labile ligands
 - (D) induction effect
- 98. Arnong the hydrogen halides, the one having the highest bond energy is:
 - (A)HI
 - (B) HF
 - (C) HBr
 - (D) HCl
- 99. Among the following ligands, the strongest π acceptor is:
 - (A) CN
 - (B) CO
 - (C) N₂
 - $(D)NO^{\dagger}$
- 100. Among teflon, water, benzoic acid and protein, hydrogen bonding is not important only in:
 - (A) teflon
 - (B) water
 - (C) benzoic acid
 - (D) protein

End of the Question Paper

rie Jr	<u>-</u> 1																		la Alum
j																			He
145																			4.0024
3	<u> </u>	Harylen 4												tren 5	Codes)	7	- P	9	10
ΙL	i l	Ве												В	С	N	0	F	Ne
6.9		110122												12.911	1//41	H digit	15(%)	10.775	At Inj
- Rā		12												13	ulean 14	15	16	17	2902m 18
N	a	Ma												Αl	Si	PÌ	S	CI '	Ar l
22.5	בי מע	Mg					Christian		-					X 302	24146	31.31	VIO.	15 (5)	Y1541
F-GL		20 z		acundum 31	22	23	24	25	26	27	11354 28	29	30	9.00m 31	32	313	34	35	16 16
ŀ	- 1	Ca		Sc	Ti i	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	l Kr l
710	560	10.5Y#		11,764	47 %3	19,344	21 925	94 (AB	\$2595_	95973	38(7)	50 555	65.3y	£3 (73	/2.51	1012	/8/÷	TP-904	173 (q.) 1874(q.)
uma a		38		36	cruntur	41	42	activiture 43	U	ъсция 45	46	_ s±∧r . 47	41	19 49	50	SI	52	15 Tar	3 4
R		Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Aα	Cd	ľn	Sn	Sb	Te		Xe
- C.		44		79.54	35 724	97 566	75 H		114 67	502 S1	105.42	Ag	117,41	114.12	11171	121 %	(25 to	124 (*)	1,11,75) R00,00
	5 I	S6	57-70	71	72	73	74	75	16	77	78	10 20	80	81	ez e	83	Mr. myn	85	86
C		Ba	*	Lu	Hf	Ta	W	Re	0 s	Ir	Pt	Au	Ӊ҈g	TI	Pb	l Bi l	Po	At	Rn
L-172	21	-12/23		114 97	1/847	_167 %_	183 64	14/75)*D 24	197.72	199,00	179.7/	λ.9	/GJ 5ml	7017	29,90	po,	DIG	I/I/I
1 1		10	89-102	103 103	104	105	106	Kerur 107	100 100	109	110	111	112		114	1			
F		Ra	* *	Lr	Rf	Db	64	Bh	Hs	Mt	Uun	lUuu	Uub		منيايا	l			
		Ta		16/3	[MI	DAZI	Sg	99g	Di/A	(2·48)	20	£74	ph	l	Uuq)			

*Lanthanide series

* Actinide series

ſ	57	مالات	50°		(c./g/km	√2762·rn	63 63	ga; m	исали . 65 .	74-44-	1786-j.m . 67 .	F1100	. 69 .	74mum 70
١	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Πb	Dv	Ho	Er	lTml	Yb
ı	_1944	110.17.	140 61	144 74	104	15936	161 96	_23 &	120	77.9	164 73	16/35	109,71	
Ī	370 mm		(chickens)			Meaning	Table Com.	CATAIN	Hruen I	Shidow	Mary Marie		ran kumira	nizetiin l
- 1	89	90	91	B2	93	94	95	96	₽7	98	99	100	101	102
ı	Ac	Th	Pa		Nn	Pu	Δm	Cm	Bk	Cf	Es	Em	Md	No
- 1	70	111	1.4	•	HIAD.	, u	~…	l Ami	ו אטון	UL	L.3		I INICI I	110
- 1	172.0	70 N	ZIM I	734m	Dia 1	DATE	7.1	Tren	1717	Light 1	65-7	175.0	l come l	150