Roll No. \qquad
B.Sc. (BI) (Semester - $\mathbf{6}^{\text {th }}$) NUMERICAL ANALYSIS (B.Sc. (BI) - 602)

Time : 03 Hours
Maximum Marks : 75
Instruction to Candidates:

1) Section - A is compulsory.
2) Attempt any Nine questions from Section - B.

Section - A

Q1)
a) Define inherent and rounding errors with example.
b) An approximate value of π is given by 3.1428571 and its true value is 3.1415926 . Find absolute and relative errors.
c) Define Newtion Raphson Method.
d) Define Hermitian and skew Hermitian matrix with example.
e) Find the rank of the matrix $\left[\begin{array}{cccc}2 & 7 & 9 & 0 \\ 0 & 5 & -2 & -1\end{array}\right]$
f) State Crammer's Rule.
g) State Triangular factorization method.
h) Solve the equations by matrix inversion method $2 x_{1}+x_{2}=1,2 x_{1}+3 x_{2}=2$.
i) Define Jacobi lteration method.
j) Define interpolation with example.
k) Prove $\Delta=\mathrm{E}-1$ and $\nabla=1-\mathrm{E}^{-1}$

1) Prove $\Delta=\mathrm{E} \nabla=\nabla \mathrm{E}=\delta \mathrm{E}^{1 / 2}$
m) State Simpson's One-Third Rule.
n) Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by using Trapezoidal Rule.
o) State Newtion's forward difference interpolation formula.

Section - B

$$
(9 \times 5=45)
$$

Q2) Solve $x^{4}-5 x^{3}+20 x^{2}-40 x+60=0$. by Newtion Raphson Method. Given that all the roots of given equation are complex.

Q3) Using Muller's method find the roots of equation $y(x)=x^{3}-2 x-5=0$, which lies between 2 and 3 .

Q4) Solve by Crammer's Rule. $x+2 y+3 z=6,2 x+4 y+z=7,3 x+3 y+9 z=15$.
Q5) Find the characteristic equation of the matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and verify that
it is satisfied by A.
Q6) If $\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]$. Express $\mathrm{A}^{6}-4 \mathrm{~A}^{5}+8 \mathrm{~A}^{4}-12 \mathrm{~A}^{3}+14 \mathrm{~A}^{2}$ as 9 Linear polynomial in A .

Q7) Solve the system of equations by Gauss Elimination method, $2 x_{1}+4 x_{2}+x_{3}=3,3 x_{1}+2 x_{2}-2 x_{3}=2, x_{1}-x_{2}+x_{3}=6$.

Q8) Solve the following system of equations by matrix inversion method. $x+y+z=3, x+2 y+3 z=4, x+4 y+9 z=6$.

Q9) Solve the system of equations by factorization method, $x_{1}+2 x_{2}+3 x_{3}=14,2 x_{1}+5 x_{2}+2 x_{3}=18,3 x_{1}+x_{2}+5 x_{3}=20$.

Q10) Sum the series $1^{3}+2^{3}+3^{3}+$ \qquad $+n^{3}$ using the calculus of finite differences.

Q11) The population of town was as given below. Using Newtion backward difference formula. Estimate the population for the year 1925

| Year \quad x | 1891 | 1901 | 1911 | 1921 | 1931 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllllll}\text { Population } & y & : & 46 & 66 & 81 & 93 & 101\end{array}$ (in thousands)

Q12) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ using Simpson's $1 / 3$ rule taking $h=\frac{1}{4}$
Q13) If $r=3 h\left(h^{6}-2\right)$. Find percentage error in r at $h=1$, if percentage error in h is 5 .

J-3189[S-1045]

