Roll No. Total No. of Questions : 13]

[Total No. of Pages : 03

Paper ID [A0202]

(Please fill this Paper ID in OMR Sheet)

BCA (102) (S05) (O) (Sem. - 1st)

BRIDGE COURSE IN MATHEMATICS

Time: 03 Hours

Maximum Marks: 75

Instruction to Candidates:

- Section A is **Compulsory**. 1)
- 2) Attempt any **Nine** questions from Section - B.

Section - A

 $(15 \times 2 = 30)$

Q1)

- a) Prove that $A \cap A^{C} = f$ by example.
- b) Draw Venn diagram of B A and A B.
- c) If $A = \{-3, 0, 1, 2\}$ & $B = \{1, 2, 3, 4\}$ then write B A and A D B.
- d) Find A B & A B if : $A = \{2, 3, 4, 8\}, B = \{1, 6\}$
- e) If A = {1, 2, 3}, B = {2, 5, 6, 1} C = {1 x² $\frac{1}{x}$, 3, 5, 9} then find (A B) × C. f) Expand $(1 2x)^3$ by Binomial. $\begin{pmatrix} x^2 \frac{1}{x} \\ x \end{pmatrix}$
- g) Define cofactor of matrix with example.
- h) Write the difference between matrix and determined.
- i) Write 4th term of

j) If
$$A = \begin{bmatrix} 5 & 1 & -3 \\ 6 & 7 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 6 & 7 \\ 1 & 0 & -17 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 6 & 1 \\ 5 & 3 & 7 \end{bmatrix}$
find $A + B - C$.

- k) Define Raw Data and discrete frequency distribution.
- Define mode and write formula to find mode. 1)
- m) Find range and its coefficient from data :

Size :	5	7	9	10	11	12
Freq. :	1	3	5	7	4	3

P.T.O.

- n) Define pure and applied statistics.
- o) Find mean of the following marks obtained by 10 students in mathematics. 52, 40, 70, 75, 43, 40, 35, 65, 48, 62

Section - B

$$(9 \times 5 = 45)$$

- **02**) Prove that $A B = A \cap B^{C}$.
- Q3) Let $A = \{1, 2\}$ and $B = \{3, 4\}$, find the number of relations from A into B and B into A.
- Q4) Find the range of function
- **Q5**) Prove $A \times (B \cup C) = (A \times B)$ $(A \times C)$.
- Q6) Prove by mathematical induction

 $\forall n \in \mathbb{N}$.

Q8) Evaluate the determinant $\begin{vmatrix} 1 & x & yz \\ 1 & y & zz \\ 1 & z & xy \end{vmatrix}$. Evaluate the determinant $\begin{vmatrix} 1 & x & yz \\ 1 & y & zx \\ 1 & z & xy \end{vmatrix}$. Q7) Using the Binomial theorem, prove that **Q9**) Prove that $A^3 - 4A^2 - 3A + 11I = 0$ where $A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3 \end{bmatrix}$.

- *Q10*) Find mean for the data : Marks 0-10 10-20 20-30 : 30-40 40-50 50-60 No. of girls : 8 14 4 2 6 16
- *Q11*) Write a note on the following :
 - (a) Graphical representation of distribution.
 - (b) Histogram.

A-59

Q12) Find the mode for the following data :

Marks:0-1010-2020-3030-4040-50No. of Students:45692

Q13) Calculate the medean of distribution of the marks obtained by the students.

Marks	:	0-10	10-20	20-30	30-40	40-50	50-60
Frequency		3	9	15	30	18	5

EEEE

A-59