Paper ID [A0202]

(Please fill this Paper ID in OMR Sheet)

BCA (102) (S05) (O) (Sem. - $\mathbf{1}^{\text {st }}$)
 bridge course in mathematics

Time : 03 Hours
Maximum Marks : 75

Instruction to Candidates:

1) Section - A is Compulsory.
2) Attempt any Nine questions from Section - B.

Section - A

Q1)
$(15 \times 2=30)$
a) Prove that $\mathrm{A} \cap \mathrm{A}^{\mathrm{C}}=\mathrm{f}$ by example.
b) Draw Venn diagram of $\mathrm{B}-\mathrm{A}$ and A
B.
c) If $\mathrm{A}=\{-3,0,1,2\} \& \mathrm{~B}=\{1,2,3,4\}$ then write $\mathrm{B}-\mathrm{A}$ and AD B .
d) Find $A \quad B \& A \quad B$ if : $A=\{2,3,4,8\}, B=\{1,6\}$
e) If $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{2,5,6,1\}, \mathrm{C}=\{1,3,5,9\}$ then find (A
B) \times C.
f) Expand $(1-2 x)^{3}$ by Binomial. $\left(x^{2}-\frac{1}{x}\right)$
g) Define cofactor of matrix with example.
h) Write the difference between matrix and determined.
i) Write $4^{\text {th }}$ term of
j) If $A=\left[\begin{array}{ccc}5 & 1 & -3 \\ 6 & 7 & 1\end{array}\right], \quad B=\left[\begin{array}{ccc}3 & 6 & 7 \\ 1 & 0 & -17\end{array}\right], \quad C=\left[\begin{array}{lll}1 & 6 & 1 \\ 5 & 3 & 7\end{array}\right]$ find $\mathrm{A}+\mathrm{B}-\mathrm{C}$.
k) Define Raw Data and discrete frequency distribution.
l) Define mode and write formula to find mode.
m) Find range and its coefficient from data :

Size :	5	7	9	10	11	12
Freq. :	1	3	5	7	4	3

n) Define pure and applied statistics.
o) Find mean of the following marks obtained by 10 students in mathematics. $52,40,70,75,43,40,35,65,48,62$

Section - B

$$
(9 \times 5=45)
$$

Q2) Prove that $\mathrm{A}-\mathrm{B}=\mathrm{A} \cap \mathrm{B}^{\mathrm{C}}$.
Q3) Let $\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{3,4\}$, find the number of relations from A into B and B into A .

Q4) Find the range of function

Q5) Prove $\mathrm{A} \times(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \quad(\mathrm{A} \times \mathrm{C})$.
Q6) Prove by mathematical induction

$$
\forall n \in \mathrm{~N} .
$$

Q7) Using the Binomial theorem, prove that
$\mathrm{C}_{1}+2 \cdot \mathrm{C}_{2} x+3 \cdot \mathrm{C}_{3} x^{2}+\cdots-\cdots+\cdots+\mathrm{C}_{\mathrm{n}} x^{\mathrm{n}-1}=$

Q9) Prove that $\mathrm{A}^{3}-4 \mathrm{~A}^{2}-3 \mathrm{~A}+11 \mathrm{I}=0$ where $\mathrm{A}=\left[\begin{array}{ccc}1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3\end{array}\right]$.
Q10) Find mean for the data:
Marks $\quad: \quad 0-10 \quad 10-20 \quad 20-30 \quad 30-40 \quad 40-50 \quad 50-60$
$\begin{array}{llllllll}\text { No. of girls : } & 6 & 8 & 14 & 16 & 4 & 2\end{array}$
Q11) Write a note on the following :
(a) Graphical representation of distribution.
(b) Histogram.

Q12) Find the mode for the following data:
Marks $: \quad 0-10 \quad 10-20 \quad 20-30$
30-40 40-50
No. of Students : 4

Q13) Calculate the medean of distribution of the marks obtained by the students.

| Marks $:$ | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency : | 3 | 9 | 15 | 30 | 18 | 5 |

$x \times x$ x

