2117

B.Sc. (H.S.) Third Semester CHEMISTRY

Paper—Chem-305

(Mathematics)

Time allowed—Three Hours] [Maximum Marks—75

Note: — Section A is compulsory. Attempt any 8 questions from Section B. Attempt any 2 questions from Section C.

SECTION-A

(each 11/2 marks)

- 1. (a) Define order and degree of the differential equations.
 - (b) Form the differential equation, if

$$y = e^{x}(A \cos x + B \sin x).$$

Les Form the partial differential equation from

$$z = f(x^2 - y^2).$$

(d) Solve :

$$r + 6s + 9t = 0$$
.

Write the formula of Trapezoidal rule. Give its order of error also.

5415

1

(Contd.)

- (f) Describe the Horner's method to find the roots of f(x) = 0.
- (g) What are Dirichlet's conditions?
- (h) Write the Fourier integral of f(x).
- (i) Find the Laplace transform of $(e^{at} + e^{-at})$.
 - (j) If f(t) is a periodic function with period T, then give L{f(t)}.

SECTION-B

(each 4½ marks)

2. Solve :

$$(x^2 - y^2)dx - xydy = 0.$$

- 3. Find particular integral of $(D^2 2D + 4)y = e^x \cos x.$
- 4. The number N of bacteria in a culture grew at a rate proportional to N. The value of N was initially 100 and increased to 332 in one hour. What would be the value of N after 1½ hours?
- 5. Solve the equation $y^2z p + x^2z q = y^2x$.
 - 6. Solve the partial differential equation

$$\frac{\partial^2 y}{\partial t^2} - a^2 \frac{\partial^2 y}{\partial x^2} = E \sin pt.$$

7. Evaluate :

$$\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz.$$

- 8. Find a negative root of $x^3 21x + 3500 = 0$ correct to 2 decimal places using Newton Raphson method.
- Simpson's $\frac{1}{3}$ rule.
 - 10. Express $f(x) = e^{-x}$ as a Fourier series in the interval $0 < x < 2\pi$.
- 11. Find the Laplace transform of $\frac{(\cos 2t \cos 3t)}{t}$
- 12. Using Convolution theorem, evaluate

$$L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}.$$

13. Solve the differential equation

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = e^t \sin t, \text{ where } y(0) = 0 \text{ and}$$

$$y'(0) = 1, \text{ using Laplace transforms.}$$

SECTION-C

(each 12 marks)

14. (a) Solve :

$$\frac{d^2y}{dx^2} - 4y = x \sin hx.$$

- (b) Solve $2z + p^2 + qy + 2y^2 = 0$, using Charpit's method.
- 15. (a) Show using double integrals that the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^3$.
 - (b) Find the centre of gravity of the cardioid $r = a(1 + \cos \theta)$.
- 16. Obtain a half range cosine series for f(x) given by :

$$f(x) = \begin{cases} kx & \text{for } -\pi \le x \le 0; \\ x+1 & \text{for } 0 \le x \le \pi. \end{cases}$$

Also deduce the sum of the series $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$

- 17. (a) Solve the simultaneous equations $\frac{dx}{dt} y = e^{t}, \frac{dy}{dt} + x = \sin t \text{ given that } x(0) = 1,$ y(0) = 0.
 - (b) If $J_o(x) = 1 \frac{x^2}{2^2} + \frac{x^4}{2^2 \cdot 4^2} \frac{x^6}{2^2 \cdot 4^2 \cdot 6^2} + \dots$, then find the Laplace transform of $J_o(x)$.