Paper V — MATHEMATICAL STATISTICS

(For those who joined in July 2003 and after)

(1 of blose wito joined in stily 2000 and arter)

Time: Three hours Maximum: 100 marks
$$SECTION\ A - (4 \times 10 = 40\ marks)$$

Answer any FOUR questions.

- 1. State and prove Chebyshev's inequality.
- 2. With usual assumptions, prove that X_1 and X_2
- are stochastically independent if and only if $M(t_1, t_2) = M(t_1, 0) M(0, t_2)$.

 3. If Y is b(n, p), prove that
- $\lim_{n\to\infty} P_r\left(\left|\frac{Y}{n}-p\right|<\varepsilon\right)=1.$
- 4. Find the mgf, mean and variance of gamma distribution.
- 5. If $f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{elsewhere,} \end{cases}$ is the pdf of a continuous random wariable, find the continuous random wariable rando

- http://www.http:// Y_1 , Y_2 , Y_3 is the order statistics of a random sample of size 3 from a distribution having pdf $f(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & \text{elsewhere,} \end{cases}$ find the pdf of $Z_1 = Y_3 - Y_1$. Find the confidence intervals for means with
- known variance σ^2 . If S^2 is the variance of a random sample of size n > 1 from a distribution that is $n(\mu, \theta)$, $0 < \theta < \infty$, what
- is the efficiency of the estimator $\frac{nS^2}{n-1}$? SECTION B — $(3 \times 20 = 60 \text{ marks})$
- Answer any THREE questions. State and prove any four properties of a
- distribution function. (b) If X has the mgf $M(t) = e^{\frac{t^2}{2}}$, $-\infty < t < \infty$, find
- the expectation of all powers of X. 10. If X and Y are continuous random variables with joint pdf f(x, y),
 - find the conditional mean of Y, given X = x
- (if it is linear) (b) variance of the conditional distribution.

with pdf $f(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & \text{elsewhere.} \end{cases}$ (a) find the joint pdf of $Y_1 = X_1 + X_2$ and

11. If X_1 and X_2 are two samples from a distribution

- $Y_2 = X_1 X_2$ find the marginal pdf of Y_1 and Y_2 .
- 12. (a) Derive Student's t-distribution. (b) If \mathbb{Z}_n is $\chi^2(n)$, prove $Y_n = (Z_n - n)/\sqrt{2n}$ has a limiting normal distribution
- with mean 0 and variance 1. 13. State and prove Neyman-Pearson theorem.
- (b) If X is b(n, p) and $Y = \frac{X np}{\sqrt{npq}}$, prove that Y^2 is $\chi^2(1)$ approximately.
- 14. State and prove Rao-Cramer inequality.

estimator of θ .

If X_1, X_2, \dots, X_n is a random sample from a Poisson distribution with mean $\theta > 0$, find an efficient