6561/KA6 OCTOBER 2007

Paper VI — OPERATIONS RESEARCH

(For those who joined in July 2003 and after)

Time: Three hours

Maximum: 100 marks

SECTION A —
$$(4 \times 10 = 40 \text{ marks})$$

Answer any FOUR questions.

1. Use simplex method to solve the following LPP

Maximize
$$z = 2x_1 + x_2$$

Subject to

$$4x_1 + 3x_2 \le 12$$

$$4x_1 + x_2 \le 8$$

$$4x_1 - x_2 \le 8$$

$$x_1, x_2 \geq 0.$$

2. Solve the following problem by dual simplex method:

$$Minimize z = 20x_1 + 16x_2$$

Subject to

$$x_1 + x_2 \ge 12$$

$$2x_1 + x_2 \ge 17$$

$$x_1 \ge 2.5$$

$$x_2 \ge 6$$

$$x_1, x_2 \geq 0.$$

3. For the network given below, find the minimum time of completion of the project. Also identify the critical path.

4. Use dynamic programming to find the value of

Minimize
$$z = y_1^2 + y_2^2 + y_3^2$$

Subject to

$$y_1 + y_2 + y_3 \ge 15$$

 $y_1, y_2, y_3 \ge 0$.

5. Solve the following 2×5 game by graphic mehtod.

Playe B

Player A
$$\begin{bmatrix} -5 & 5 & 0 & -1 & 8 \\ 8 & -4 & -1 & 6 & 5 \end{bmatrix}$$

- 6. Explain the Branch and Bound method.
 - 7. A branch of National Bank has only one typist. Since the typing work varies in length (number of pages to be typed), the typing rate is randomly distributed approximating a Poisson distribution with more partial approximating a Poisson distribution with more partial pages.
 - approximating a Poisson distribution with mean service rate of 8 letters per hour. The letter arrive at a rate of 5 per hour during the entire 8-hour work day. If the
- typewriter is valued at Rs. 1.50 per hour, determine

 (a) Average system time
- (b) Average idle time cost of the typewriter per day.
- 8. Find the minimum of the function $f(x) = x_1^2 + x_2^2 + x_3^2 4x_1 8x_2 12x_3 + 56.$ SECTION B $(3 \times 20 = 60 \text{ marks})$
 - Answer any THREE questions.
- 9. (a) Describe the role of duality for sensitivity analysis of an L.P. problem.(b) Consider the problem
 - (b) Consider the problem

 Maximize $z = 5x_1 + 3x_2 + 7x_3$ Subject to

$$x_1 + x_2 + x_3 \le 22$$

$$3x_1 + 2x_2 + x_3 \le 26$$

$$x_1 + x_2 + x_3 \le 18$$

$$x_1, x_2, x_3 \ge 0.$$

What will be the solution if the first constraint changes to $x_1 + x_2 + 2x_3 \le 26$?

10. Solve the following integer programming problem

 $Maximize z = 2x_1 + 3x_2$

Subject to

$$6x_1 + 5x_2 \le 25$$

$$x_1 + 3x_2 \le 10$$

$$x_1, x_2 \ge 0$$

and integers.

11. A project is represented by the network given below. The activity times are given below.

Activity: A B C D E F G H

Optimistic time: 5 18 26 16 15 6 7 7

Most likely time: 8 20 33 18 20 9 10 8

Pessimistic time: 10 22 40 20 25 12 12 9

(a) Expected task times and their variances

(b) The critical path

Determine the following:

(c) The probability of completing the project in 41.5 weeks.

6561/KA6

[P,T,O]

6561/KA6

- 12. (a) Explain the Birth-Death process.
- (b) A shipping company has a single unloading dock with ships arriving in a Poisson fashion at an average rate of 3 per day. The unloading time distribution for a ship with n unloading crews is found to be exponential with average unloading time $\frac{1}{2}$ days.

The company has a large labour supply without regular working hours and to avoid long waiting times, the company has a policy of using as many unloading crews as there are ships waiting in line or being unloaded. Find

- (i) the average number of unloading crews working at any time and
- (ii) the probability that more than 4 crews will be needed.
- 13. Apply Wolfe's method to solve the quadratic programming problem:

Maximize
$$z = 2x_1 + x_2 - x_1^2$$

Subject to

$$2x_1 + 3x_2 \le 6$$
$$2x_1 + x_2 \le 4$$
$$x_1, x_2 \ge 0.$$

14. Use separable programming algorithm to the non-linear programming problem:

$$Maximize z = x_1 + x_2^4$$

Subject to the constraints:

$$3x_1 + 2x_2^2 \le 9$$

$$x_1 \ge 0, x_2 \ge 0.$$

6