

Printed Pages: 7 TEC – 201

(Following Paper ID and I	Roll No. to	be	fille	d in	you	ır <i>i</i>	Answ	/er	Во	ok)
PAPER ID: 3034	Roll No.									

B. Tech.

(SEM. II) EXAMINATION, 2006-07 ELECTRONICS ENGG.

Time: 3 Hours] [Total Marks: 100

Note: Attempt all questions. All questions carry equal marks.

- 1 Attempt any four parts of the following: $5\times4=20$
 - (a) Describe the characteristics of ideal diode. Determine the ON and OFF state of the device.
 - (b) Draw the characteristics in foward and reverse bias and explain it.
 - (c) Show the energy levels diagram in insulators, semi-conductor and conductor materials.
 - (d) Differentiate between:
 - (i) Donor and acceptor impurities
 - (ii) Intrinsic and Extrinsic semiconductors.
 - (e) Explain the static and dynamic resistance in **p-n** junction diode. Determine the dc resistance levels for the diode of in following fig at
 - (i) $I_D = 2mA$
 - (ii) $I_D = 20mA$
 - (iii) $V_D = -10V$

V-3034] 1 [Contd...

Fig. 1

- (f) Describe how diffusion and Transtition Capacitance differ. Draw the characteristics of Transition and diffusion capacitance versus applied bias voltage.
- 2 Attempt any four parts of the following: $5\times4=20$
 - (a) What is dc load line? Prove that the operating point should be in the middle of the dc load line.
 - (b) Draw the circuit diagram of a full wave rectifier using two diodes and calculate
 - (i) Idc
 - (ii) Irms
 - (iii) PIV rating of diode.
 - (c) Determine I, V_1 , V_2 and V_o for the series dc configuration of the following figure.

(d) Sketch $\mathbf{V_o}$ for network shown in Fig.

Fig. 3

(e) Determine $\mathbf{I_S}$, $\mathbf{I_L}$ and $\mathbf{I_{Z'}}$

(f) Sketch the output waveform.

- 3 Attempt any four parts of the following: 5+4=20
 - (a) Explain why a transistor action can not be achieved by connecting two back-to-back diodes. In a transistor explain, why emitter region is heavily doped, base width is small and collector area is large?
 - (b) Determine the following for the voltage divider configuration
 - i) I_c (ii) V_E (iii) V_B (iv) V_C (v) R_I 0 + 16V 0
 - (c) Differentiate CB, CE and CC circuits.
 - (d) Determine the resistor values for the following network for the indicated operating point and power supply voltage.

 Vac = 20V

V-3034] 4 [Contd...

(e) Determine A_V , A_i , R_i and R_o for the following circuit.

(f) Determine the quiesent levels of I_{c2} and V_{CEQ} for the network

- 4 Attempt any two parts of the following: $10\times2=20$
 - (a) Draw the structure of a JFET and explain its principle of operation with neat diagrams. Also sketch its **V-I** characteristics. Define pinch-off voltage and mark it on the characteristics. Explain its importance.
 - (b) For the given measurement $V_s = 1.7V$ for the network as shown in the figure determine.

V-3034] 5 [Contd...

- (c) Describe briefly, the construction of a MOSFET in enhancement mode. Draw its characteristics.
 Draw the equivalent circuit of a MOSFET operating in enhancement mode.
- 5 Attempt any two parts of the following: $10\times2=20$
 - (a) (i) Convert the following numbers

(a)
$$(6089.25)_{10} = ()_8$$

(b)
$$(A6B.F5)_{16} = ()_2$$

(c)
$$(375.37)_8 = ()_2$$

(2)
$$(6488.43)_9$$
 - $(3837.78)_9$

V-3034] 6 [Contd...

- (iii) Simplify the following logic expression using Boolean algebra
 - (a) f = AB + A (B+C) + B (B+C)
 - (b) $\mathbf{f} = \mathbf{A} \, \mathbf{\bar{B}} \mathbf{\bar{C}} \mathbf{D} + \mathbf{\bar{A}} \mathbf{\bar{B}} \mathbf{D} + \mathbf{B} \mathbf{C} \mathbf{\bar{D}} + \mathbf{\bar{A}} \mathbf{B} + \mathbf{B} \mathbf{\bar{C}}$
- (b) (i) Simplify the following expression using K-map and implement the output using fundamental gates.

 $f(A,B,C,D) = \sum m(1,3,4,6,8,9,11,13,15) + \sum d(0,2,14)$

(ii) Simplify the following expression using K-map

 $f(A,B,C,D) = \Pi M(0, 1, 3, 6, 7, 8, 9, 11, 13, 14, 15)$

- (c) (i) What are the properties of an ideal operational amplifier used in measurement and instrumentation system? Explain with the help of circuit diagrams how it is used
 - (a) Adder
- (b) Subtractor
- (c) Integrator
- (d) Differentiator
- (ii) Calculate the output voltage of an OP-AMP summing amplifier for the following sets of voltages and resistors.

Use Rf = 1M Ω in all cases.

(a) $V_1 = +1V$ $V_2 = +2V$, $V_3 = +3V$

 $R_1 = 500 \text{ K}\Omega$ $R_2 = 1M\Omega$ $R_3 = 1M\Omega$

(b) $V_1 = -2V$, $V_2 = +3V$, $V_3 = +1V$

 $R_1 = 200 \text{ K}\Omega, R_2 = 500 \text{ K}\Omega, R_3 = 1\text{M}\Omega$

V-3034] 7 [27650]