

Printed Pages: 3 ME – 604

| (Following Paper ID and Roll No. to be filled in your Answer Book) |        |          |  |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------|--------|----------|--|--|--|--|--|--|--|--|--|--|--|
| PAPER ID                                                           | : 4052 | Roll No. |  |  |  |  |  |  |  |  |  |  |  |

## B. Tech.

## (SEM. VI) EXAMINATION, 2006-07

## FLUID MACHINERY

Time: 3 Hours] [Total Marks: 100]

*Note* : (1)

- (1) Attempt all questions.
- (2) All questions carry equal marks.
- (3) Assume suitably, missing data, if any.
- 1 Attempt any **four** parts of the followings:
  - (a) What are the bases of classification of fluid machines?
  - (b) Derive linear-momentum equation.
  - (c) What is the difference between the force of jet when it impinges on a single moving flat plate and the force of jet when it strikes on a series of moving plates?
  - (d) What is significance of Euler's fundamental equation for fluid machines?
  - (e) Why is the jet deflected by the buckets between 160° to 165° instead of 180°?
  - (f) What importance has the ratio.

 $m = \frac{\text{mean diameter of pelton wheel}}{\text{Least diameter of jet.}}$ 

V-4052] 1 [Contd...

- 2 Attempt any **four** parts of the following:
  - (a) Describe briefly how the governing of a Kaplan Turbine is carried out.
  - (b) What are the functions of a draft tube?
  - (c) Why is it necessary to choose the number of Francis runner blades as odd and the number of guide vanes as even.
  - (d) What is meant by 'cavitations'? How and where does it occur in water power plant?
  - (e) Deduce an expression for the specific speed of a hydraulic turbine and explain how it is useful in practice.
  - (f) A Francis turbine with an overall efficiency of 76% is required to produce 150 kW. It is working under a head of 8 m. The peripheral velocity =  $0.55 \sqrt{2\,gH}$  and the radial velocity of flow at inlet is  $0.95 \sqrt{2\,gH}$ . The wheel runs at 150 rpm and the hydraulic losses in the turbine are 20% of the available energy. Assuming radial discharge, determine:
    - (i) guide blade angle (ii) the wheel vane angle at inlet, and (iii) diameter of wheel at inlet.
- 3 Attempt any two parts of the followings:
  - (a) How the centrifugal pumps are classified?
  - (b) What are the different efficiencies of a centrifugal pump?
  - (c) Explain the effect of variation of speed on discharge, head and power.

V-4052] 2 [Contd..

- (d) Describe cavitations and separation phenomenon in centrifugal pump.
- 4 Attempt any two parts of the following:
  - (a) Explain the working principle of a centrifugal pump with the help of a line sketch, naming all the parts.
  - (b) Explain working of positive rotary pumps namely gear and vane pumps with this help of neat sketches.
  - (c) Why is the suction height of a pump limited? On what factors does it depend?
- 5 Attempt any **two** parts of the following:
  - (a) Describe the working of a hydraulic accumulator with the help of a neat sketch. Also define the capacity of an accumulator.
  - (b) Explain the working of a hydraulic intensifier with the aid of a neat sketch.
  - (c) State and draw the characteristics of fluid coupling and torque convertor.